BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-04-2020, 05:04 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Molecular chaperones and their denaturing effect on client proteins

Molecular chaperones and their denaturing effect on client proteins

Abstract

Advanced NMR methods combined with biophysical techniques have recently provided unprecedented insight into structure and dynamics of molecular chaperones and their interaction with client proteins. These studies showed that several molecular chaperones are able to dissolve aggregation-prone polypeptides in aqueous solution. Furthermore, chaperone-bound clients often feature fluid-like backbone dynamics and chaperones have a denaturing effect on clients. Interestingly, these effects that chaperones have on client proteins resemble the effects of known chaotropic substances. Following this analogy, chaotropicity could be a fruitful concept to describe, quantify and rationalize molecular chaperone function. In addition, the observations raise the possibility that at least some molecular chaperones might share functional similarities with chaotropes. We discuss these concepts and outline future research in this direction.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Chaperone–client complexes: A dynamic liaison
Chaperone–client complexes: A dynamic liaison Publication date: April 2018 Source:Journal of Magnetic Resonance, Volume 289</br> Author(s): Sebastian Hiller, Björn M. Burmann</br> Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve...
nmrlearner Journal club 0 03-13-2018 04:24 AM
For Some Chaperones, Stability Comes in Pairs | GEN - Genetic Engineering & Biotechnology News
http://www.bionmr.com//t2.gstatic.com/images?q=tbn:ANd9GcRy93nrx2KA1pfnZUHw_Aky01votI5CtNzpL60wkAaXNP8OiInW0AV6plVDxv92lekRFwFYdYVM Genetic Engineering & Biotechnology News <img alt="" height="1" width="1"> For Some Chaperones, Stability Comes in Pairs | GEN Genetic Engineering & Biotechnology News Like an acrobatic duoâ??single proteins lend each other greater stability. . Chaperone molecules are an important part of protein dynamics for daily cellular function. Misfolded proteins are nonfunctional and can cause ... and more &raquo; For Some Chaperones, Stability Comes in Pairs |...
nmrlearner Online News 0 12-09-2017 07:49 AM
[NMR paper] Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation.
Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation. Chembiochem. 2017 Feb 16;18(4):396-401 ...
nmrlearner Journal club 0 07-05-2017 10:27 AM
Chaperones and chaperone–substrate complexes: Dynamic playgrounds for NMR spectroscopists
Chaperones and chaperone–substrate complexes: Dynamic playgrounds for NMR spectroscopists Publication date: April 2015 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volumes 86–87</br> Author(s): Björn M. Burmann , Sebastian Hiller</br> The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex...
nmrlearner Journal club 0 04-12-2015 02:40 AM
Interacting chaperones: NMR and X-ray combine to unravel combined relationship
Interacting chaperones: NMR and X-ray combine to unravel combined relationship Researchers in the US have combined nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography to gain new insights into the way in which a member of the histone chaperone family of specialized proteins functions. Source: Spectroscopynow.com
nmrlearner General 0 03-15-2012 06:10 AM
Study of effect of molecular mobility in chromatophore membranes of the bacterium E.
Study of effect of molecular mobility in chromatophore membranes of the bacterium E. shaposhnikovii on processes of photoinduced electron transport using the NMR-spin-echo method with isotope substitution and dehydration. Related Articles Study of effect of molecular mobility in chromatophore membranes of the bacterium E. shaposhnikovii on processes of photoinduced electron transport using the NMR-spin-echo method with isotope substitution and dehydration. Biochemistry (Mosc). 2010 Apr;75(4):423-7 Authors: Chamorovsky CS, Chamorovsky SK, Knox PP ...
nmrlearner Journal club 0 10-26-2010 07:57 PM
[NMR paper] NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing co
NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions. Biochemistry. 1997 Apr 1;36(13):3959-70 Authors: Zhang O, Forman-Kay JD The isolated N-terminal SH3 domain of the Drosophila adapter protein drk (drkN SH3 domain) exists in a dynamic equilibrium between a folded (F(exch)) and an unfolded (U(exch)) state...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing co
NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions. Biochemistry. 1997 Apr 1;36(13):3959-70 Authors: Zhang O, Forman-Kay JD The isolated N-terminal SH3 domain of the Drosophila adapter protein drk (drkN SH3 domain) exists in a dynamic equilibrium between a folded (F(exch)) and an unfolded (U(exch)) state...
nmrlearner Journal club 0 08-22-2010 03:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:04 PM.


Map