BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Comparison of

Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Comparison of phosphatidylethanolamines and phosphatidylcholines.

Related Articles Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Comparison of phosphatidylethanolamines and phosphatidylcholines.

Biophys J. 1991 Jan;59(1):108-13

Authors: Thurmond RL, Dodd SW, Brown MF

The role of lipid diversity in biomembranes is one of the major unsolved problems in biochemistry. One parameter of possible importance is the mean cross-sectional area occupied per lipid molecule, which may be related to formation of nonbilayer structures and membrane protein function. We have used 2H NMR spectroscopy to compare the properties of 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-d62) and 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62) in the L alpha phase. We find that DPPE has greater segmental order than DPPC, and that this increase in order is related to the smaller area per acyl chain found for DPPE. Values of the mean cross-sectional chain area are calculated using a simple diamond lattice model for the acyl chain configurational statistics, together with dilatometry data. The results obtained for the mean area per molecule are comparable with those from low angle x-ray diffraction studies.

PMID: 2015377 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structure of the lipodepsipeptide syringomycin E in phospholipids and sodium dodecylsulphate micelle studied by circular dichroism, NMR spectroscopy and molecular dynamics.
Structure of the lipodepsipeptide syringomycin E in phospholipids and sodium dodecylsulphate micelle studied by circular dichroism, NMR spectroscopy and molecular dynamics. Structure of the lipodepsipeptide syringomycin E in phospholipids and sodium dodecylsulphate micelle studied by circular dichroism, NMR spectroscopy and molecular dynamics. Biochim Biophys Acta. 2011 Sep;1808(9):2102-10 Authors: Anselmi M, Eliseo T, Zanetti-Polzi L, Fullone MR, Fogliano V, Di Nola A, Paci M, Grgurina I Abstract Syringomycin E (SRE) is a member of a...
nmrlearner Journal club 0 09-13-2011 08:27 PM
[NMR paper] Helix motion in protein C12A-p8(MTCP1): comparison of molecular dynamics simulations
Helix motion in protein C12A-p8(MTCP1): comparison of molecular dynamics simulations and multifield NMR relaxation data. Related Articles Helix motion in protein C12A-p8(MTCP1): comparison of molecular dynamics simulations and multifield NMR relaxation data. J Comput Chem. 2002 Dec;23(16):1577-86 Authors: Barthe P, Roumestand C, Déméné H, Chiche L The human p8(MTCP1) protein is constituted by an original disulfide bridged alpha-hairpin motif, and a third hydrophilic helix that appeared mobile and independent in NMR analysis. To get atomic...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Nmr probes of molecular dynamics: overview and comparison with other techniques.
Nmr probes of molecular dynamics: overview and comparison with other techniques. Related Articles Nmr probes of molecular dynamics: overview and comparison with other techniques. Annu Rev Biophys Biomol Struct. 2001;30:129-55 Authors: Palmer AG NMR spin relaxation spectroscopy is a powerful approach for characterizing intramolecular and overall rotational motions in proteins. This review describes experimental methods for measuring laboratory frame spin relaxation rate constants by high-resolution solution-state NMR spectroscopy, together...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] A comparison of 15N NMR relaxation measurements with a molecular dynamics simulation:
A comparison of 15N NMR relaxation measurements with a molecular dynamics simulation: backbone dynamics of the glucocorticoid receptor DNA-binding domain. Related Articles A comparison of 15N NMR relaxation measurements with a molecular dynamics simulation: backbone dynamics of the glucocorticoid receptor DNA-binding domain. Proteins. 1993 Dec;17(4):375-90 Authors: Eriksson MA, Berglund H, Härd T, Nilsson L The rapid motions of the backbone of the DNA-binding domain of the glucocorticoid receptor (GR DBD) have been investigated using...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] Comparison of protein structures determined by NMR in solution and by X-ray diffracti
Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single crystals. Related Articles Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single crystals. Q Rev Biophys. 1992 Aug;25(3):325-77 Authors: Billeter M
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] 3 Nsec molecular dynamics simulation of the protein ubiquitin and comparison with X-r
3 Nsec molecular dynamics simulation of the protein ubiquitin and comparison with X-ray crystal and solution NMR structures. Related Articles 3 Nsec molecular dynamics simulation of the protein ubiquitin and comparison with X-ray crystal and solution NMR structures. J Biomol Struct Dyn. 1992 Apr;9(5):935-49 Authors: Braatz JA, Paulsen MD, Ornstein RL Mainly due to computational limitations, past protein molecular dynamics simulations have rarely been extended to 300 psec; we are not aware of any published results beyond 350 psec. The present...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora
Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Related Articles Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Biochem Genet. 1991 Oct;29(9-10):447-59 Authors: Young JL, Marzluf GA In Neurospora crassa, the expression of unlinked structural genes which encode nitrogen catabolic enzymes is subject to genetic and metabolic regulation. The negative-acting nmr regulatory gene...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora
Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Related Articles Molecular comparison of the negative-acting nitrogen control gene, nmr, in Neurospora crassa and other Neurospora and fungal species. Biochem Genet. 1991 Oct;29(9-10):447-59 Authors: Young JL, Marzluf GA In Neurospora crassa, the expression of unlinked structural genes which encode nitrogen catabolic enzymes is subject to genetic and metabolic regulation. The negative-acting nmr regulatory gene...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:52 PM.


Map