BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-02-2018, 12:52 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,787
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Methyl group reorientation under ligand binding probed by pseudocontact shifts

Methyl group reorientation under ligand binding probed by pseudocontact shifts

Abstract

Liquid-state NMR spectroscopy is a powerful technique to elucidate binding properties of ligands on proteins. Ligands binding in hydrophobic pockets are often in close proximity to methyl groups and binding can lead to subtle displacements of methyl containing side chains to accommodate the ligand. To establish whether pseudocontact shifts can be used to characterize ligand binding and the effects on methyl groups, the N-terminal domain of HSP90 was tagged with caged lanthanoid NMR probe 5Â*at three positions and titrated with a ligand. Binding was monitored using the resonances of leucine and valine methyl groups. The pseudocontact shifts (PCS) caused by ytterbium result in enhanced dispersion of the methyl spectrum, allowing more resonances to be observed. The effects of tag attachment on the spectrum and ligand binding are small. Significant changes in PCS were observed upon ligand binding, indicating displacements of several methyl groups. By determining the cross-section of PCS iso-surfaces generated by two or three paramagnetic centers, the new position of a methyl group can be estimated, showing displacements in the range of 1â??3Â*Ã? for methyl groups in the binding site. The information about such subtle but significant changes may be used to improve docking studies and can find application in fragment-based drug discovery.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Complete assignment of Ala, Ile, Leu, Met and Val methyl groups of human blood group A and B glycosyltransferases using lanthanide-induced pseudocontact shifts and methylâ??methyl NOESY
Complete assignment of Ala, Ile, Leu, Met and Val methyl groups of human blood group A and B glycosyltransferases using lanthanide-induced pseudocontact shifts and methylâ??methyl NOESY Abstract Human blood group A and B glycosyltransferases (GTA, GTB) are highly homologous glycosyltransferases. A number of high-resolution crystal structures is available showing that these enzymes convert from an open conformation into a catalytically active closed conformation upon substrate binding. However, the mechanism of glycosyltransfer is still under debate,...
nmrlearner Journal club 0 04-26-2018 04:36 PM
Methyl group assignment using pseudocontact shifts with PARAssign
Methyl group assignment using pseudocontact shifts with PARAssign Abstract A new version of the program PARAssign has been evaluated for assignment of NMR resonances of the 76 methyl groups in leucines, isoleucines and valines in a 25Â*kDa protein, using only the structure of the protein and pseudocontact shifts (PCS) generated with a lanthanoid tag at up to three attachment sites. The number of reliable assignments depends strongly on two factors. The principle axes of the magnetic susceptibility tensors of the paramagnetic centers should not be...
nmrlearner Journal club 0 11-27-2017 01:29 PM
[NMR paper] Use of Fluorine Pseudocontact Shifts to Characterize the Protein-Ligand Interaction Mode in the Limit of NMR Intermediate Exchange.
Use of Fluorine Pseudocontact Shifts to Characterize the Protein-Ligand Interaction Mode in the Limit of NMR Intermediate Exchange. Use of Fluorine Pseudocontact Shifts to Characterize the Protein-Ligand Interaction Mode in the Limit of NMR Intermediate Exchange. Angew Chem Int Ed Engl. 2017 Aug 28;: Authors: Gao J, Liang E, Ma R, Li F, Liu Y, Liu J, Jiang L, Li C, Dai H, Wu J, Su X, He W, Ruan K Abstract The characterization of protein-ligand interaction modes becomes recalcitrant in the NMR intermediate exchange regime as the...
nmrlearner Journal club 0 08-29-2017 05:35 PM
[NMR paper] Use of Fluorine Pseudocontact Shifts to Characterize the Protein-Ligand Interaction Mode in the Limit of NMR Intermediate Exchange
Use of Fluorine Pseudocontact Shifts to Characterize the Protein-Ligand Interaction Mode in the Limit of NMR Intermediate Exchange The characterization of protein-ligand interaction modes becomes recalcitrant in the NMR intermediate exchange regime as the interface resonances are broadened beyond detection. Here, we determined the 19F low-populated bound-state pseudocontact shifts (PCSs) of mono- and di-fluorinated inhibitors of the BRM bromodomain using a highly-skewed protein/ligand ratio. The bound-state 19F PCSs were retrieved from 19F chemical exchange saturation transfer (CEST) in...
nmrlearner Journal club 0 08-29-2017 01:33 AM
Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts
Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts Abstract Neurotransmitter release depends critically on the neuronal SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, as well as on other proteins such as Munc18-1, Munc13-1 and synaptotagmin-1. Although three-dimensional structures are available for these components, it is still unclear how they are assembled between the synaptic vesicle and plasma membranes to trigger fast, Ca2+-dependent membrane fusion. Methyl...
nmrlearner Journal club 0 12-18-2016 05:04 AM
An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins
An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins Abstract Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded...
nmrlearner Journal club 0 01-04-2016 07:49 PM
Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags
Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags Abstract Pseudocontact shifts (PCS) induced by tags loaded with paramagnetic lanthanide ions provide powerful long-range structure information, provided the location of the metal ion relative to the target protein is known. Usually, the metal position is determined by fitting the magnetic susceptibility anisotropy (Î?Ï?) tensor to the 3D structure of the protein in an 8-parameter fit, which requires a large set of PCSs to be reliable. In an alternative...
nmrlearner Journal club 0 11-23-2015 06:58 PM
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid. Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid. Angew Chem Int Ed Engl. 2011 Jan 17;50(3):692-4 Authors: Nguyen TH, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting G
nmrlearner Journal club 0 01-13-2011 12:00 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:14 PM.


Map