Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative 像C NMR analysis of the products in wild-type and mutants.
Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative 像C NMR analysis of the products in wild-type and mutants.
Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative 像C NMR analysis of the products in wild-type and mutants.
J Biotechnol. 2011 Jan 10;151(1):30-42
Authors: Choi MH, Xu J, Gutierrez M, Yoo T, Cho YH, Yoon SC
Polyhydroxyalkanoic acids (PHAs) and rhamnolipids considered as biotechnologically important compounds are simultaneously produced by Pseudomonas aeruginosa. Both are synthesized from common precursors, (R)-3-hydroxyfatty acids. To find the probable metabolic relationship between their syntheses, we investigated the PHA and rhamnolipids production in four pha (phaC1, phaC2, phaZ, and phaG), four rhl (rhlA, rhlB, rhlR, and rhlI) and rpoS mutant strains of P. aeruginosa PA14 and PAO1 grown in minimal medium containing 70 mM fructose or 30 mM decanoic acid. Higher PHA accumulation was found in the rhamnolipid-negative mutants than in the wild-type strains, suggesting that 3-hydroxyfatty acid precursors become more available for PHA synthesis when rhamnolipids synthesis is absent. However, compared to the wild-type strains, rhamnolipids production was not enhanced in the four pha mutants of P. aeruginosa PA14 and PAO1 which indicates that rhamnolipids production in P. aeruginosa could be tightly regulated at the transcriptional level by a quorum-sensing response. The metabolic pathways for PHA and rhamnolipid synthesis from medium-chain-length fatty acids were also investigated using octanoic-1-像C acid. 像C NMR analysis revealed that the monomer-unit (R)-3-hydroxyoctanoate-1-像C being converted from the octanoic acid substrate was effectively incorporated into PHA. In the rhamnolipid synthesis, the (R)-3-hydroxyoctanoate-1-像C is suggested to be firstly converted to (R)-3-hydroxydecanoate-1,3-像C via fatty acid de novo biosynthesis pathway and then further processed into (R)-3-((R)-3-hydroxyalkanoyloxy)alkanoic acids (HAAs) via RhlA. The ratio of mono- to dirhamnolipids in the product depended on the type of carbon sources. The rhlB mutant could be exploited as an efficient producer of the important biosurfactant HAAs (e.g., ~700 mg/L HAAs was obtained when grown on 60 mM octanoic acid).
Identification of Cryptic Products of the Gliotoxin Gene Cluster Using NMR-Based Comparative Metabolomics and a Model for Gliotoxin Biosynthesis
Identification of Cryptic Products of the Gliotoxin Gene Cluster Using NMR-Based Comparative Metabolomics and a Model for Gliotoxin Biosynthesis
Ry R. Forseth, Ellen M. Fox, DaWoon Chung, Barbara J. Howlett, Nancy P. Keller and Frank C. Schroeder
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2029987/aop/images/medium/ja-2011-029987_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2029987
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/kET0fe1YTXQ
nmrlearner
Journal club
0
06-07-2011 01:01 AM
Targeting Bacterial Membranes: Identification of Pseudomonas aeruginosa D-Arabinose-5P Isomerase and NMR Characterisation of its Substrate Recognition and Binding Properties.
Targeting Bacterial Membranes: Identification of Pseudomonas aeruginosa D-Arabinose-5P Isomerase and NMR Characterisation of its Substrate Recognition and Binding Properties.
Targeting Bacterial Membranes: Identification of Pseudomonas aeruginosa D-Arabinose-5P Isomerase and NMR Characterisation of its Substrate Recognition and Binding Properties.
Chembiochem. 2011 Feb 17;
Authors: Airoldi C, Sommaruga S, Merlo S, Sperandeo P, Cipolla L, Polissi A, Nicotra F
The identification and characterisation of Pseudomonas aeruginosa KdsD (Pa-KdsD), a...
nmrlearner
Journal club
0
02-22-2011 10:40 PM
[NMR paper] 1H-NMR study of a cobalt-substituted blue copper protein: Pseudomonas aeruginosa Co(I
1H-NMR study of a cobalt-substituted blue copper protein: Pseudomonas aeruginosa Co(II)-azurin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR study of a cobalt-substituted blue copper protein: Pseudomonas aeruginosa Co(II)-azurin.
Eur J Biochem. 1995 Jul 15;231(2):358-69
Authors: Salgado J, Jim矇nez HR, Donaire A, Moratal JM
Substitution of copper by cobalt in blue copper proteins gives a paramagnetic metalloderivative...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-
13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin.
Biophys J. 1994 Jun;66(6):2111-26
Authors: Kemple MD, Yuan...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-
13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin.
Biophys J. 1994 Jun;66(6):2111-26
Authors: Kemple MD, Yuan...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determine
Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determined by two-dimensional 1H NMR.
Related Articles Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determined by two-dimensional 1H NMR.
Biochemistry. 1991 Sep 17;30(37):9040-6
Authors: Detlefsen DJ, Thanabal V, Pecoraro VL, Wagner G
The solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa based on 2D 1H NMR data is reported. Two sets of structure calculations were completed with a combination of simulated annealing...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determine
Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determined by two-dimensional 1H NMR.
Related Articles Solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa as determined by two-dimensional 1H NMR.
Biochemistry. 1991 Sep 17;30(37):9040-6
Authors: Detlefsen DJ, Thanabal V, Pecoraro VL, Wagner G
The solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa based on 2D 1H NMR data is reported. Two sets of structure calculations were completed with a combination of simulated annealing...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the
Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the recombinant enzyme from Escherichia coli, and an Asp-235----Asn-235 mutant.
Related Articles Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the recombinant enzyme from Escherichia coli, and an Asp-235----Asn-235 mutant.
Biochemistry. 1990 Sep 18;29(37):8797-804
Authors: Satterlee JD, Erman JE, Mauro JM, Kraut J
Proton NMR spectra of cytochrome c peroxidase (CcP) isolated from yeast (wild type) and two Escherichia coli...