Abstract Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary supplements are otherwise healthy and grow normally. In this study, all vitamin C sources were removed after weaning from the diet of Guloâ??/â?? mice (n = 7) and wild type controls (n = 7) for 12 weeks before collection of serum. A replicate study was performed with similar parameters but animals were harvested pre-symptomatically after 2â??3 weeks. The serum concentration of 50 metabolites was determined by quantitative profiling of 1D proton NMR spectra. Multivariate statistical models were used to describe metabolic changes as compared to control animals; replicate study animals were used for external validation of the resulting models. The results of the study highlight the metabolites and pathways known to require ascorbate for proper flux.
Content Type Journal Article
Pages 1-9
DOI 10.1007/s10858-011-9485-5
Authors
Gavin E. Duggan, Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive N.W, Calgary, AB T2N 1N4, Canada
B. Joan Miller, Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
Frank R. Jirik, Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
Hans J. Vogel, Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive N.W, Calgary, AB T2N 1N4, Canada
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
J Proteome Res. 2010 Dec 3;9(12):6729-39
Authors: Szeto SS, Reinke SN, Sykes BD, Lemire BD
Metabolomics is a powerful method of examining the intricate connections between mutations, metabolism, and disease. Metabolic...
nmrlearner
Journal club
0
05-25-2011 07:01 PM
Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics.
Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics.
Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics.
Ecotoxicology. 2011 May 15;
Authors: Liu X, Yang C, Zhang L, Li L, Liu S, Yu J, You L, Zhou D, Xia C, Zhao J, Wu H
Cadmium is a non-essential element to living organisms and has become the severe contaminant in both seawater and sediment in the intertidal zones of the Bohai Sea. The halophyte, Suaeda salsa...
nmrlearner
Journal club
0
05-17-2011 06:21 PM
Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra
Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra
Abstract Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next....
nmrlearner
Journal club
0
03-03-2011 02:06 AM
1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems
1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems
Abstract The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological...
nmrlearner
Journal club
0
03-03-2011 02:06 AM
In Vivo NMR Metabolic Profiling of Fabrea salina Reveals Sequential Defense Mechanisms against Ultraviolet Radiation.
In Vivo NMR Metabolic Profiling of Fabrea salina Reveals Sequential Defense Mechanisms against Ultraviolet Radiation.
In Vivo NMR Metabolic Profiling of Fabrea salina Reveals Sequential Defense Mechanisms against Ultraviolet Radiation.
Biophys J. 2011 Jan 5;100(1):215-24
Authors: Marangoni R, Paris D, Melck D, Fulgentini L, Colombetti G, Motta A
Fabrea salina is a hypersaline ciliate that is known to be among the strongest ultraviolet (UV)-resistant microorganisms; however, the molecular mechanisms of this resistance are almost unknown. By means...
spectroscopy to fingerprint a person's metabolic phenotype
spectroscopy to fingerprint a person's metabolic phenotype
Now, NMR spectroscopy has revealed that an "omic" other than genomic could provide a unique view of each of the 6.7 billion people on earth - their metabonomic fingerprint.
More...