BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-28-2015, 04:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

Abstract

MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts (15N, 13Cα, and 13Câ?²), six types of J couplings (3JHNHα, 3JCâ?²Câ?², 3JCâ?²Hα, 1JHαCα, 2JCαN and 1JCαN), as well as the 15N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15°Â*Ã?Â*15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins
A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins Abstract Sequence specific resonance assignment is the prerequisite for the NMR-based analysis of the conformational ensembles and their underlying dynamics of intrinsically disordered proteins. However, rapid solvent exchange in intrinsically disordered proteins often complicates assignment strategies based on HN-detection. Here we present a six-dimensional alpha proton detection-based automated projection spectroscopy (APSY)...
nmrlearner Journal club 0 11-04-2014 01:02 AM
[NMR paper] Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation.
Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation. Probing Local Backbone Geometries in Intrinsically Disordered Proteins by Cross-Correlated NMR Relaxation. Angew Chem Int Ed Engl. 2013 Mar 20; Authors: Stanek J, Saxena S, Geist L, Konrat R, Ko?mi?ski W Abstract Ab ultra-high-resolution NMR experiment for the measurement of intraresidue (1) H(i)-(15) N(i)-(13) C'(i) dipolar-chemical shift anisotropy relaxation interference is employed to extract information about local backbone...
nmrlearner Journal club 0 03-23-2013 06:36 PM
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 August 2011</br> Sungsool, Wi , Justin, Spano</br> A solid-state rotational-echo double resonance (REDOR) NMR method was introduced to identify the ?- and ?-torsion angle from a 1H–15N or 1H–13C? spin system of alanine-like residues in a selectively, uniformly, or extensively 15N-/13C-labeled peptide. When a C?(i) or a 15N peak is site-specifically obtainable in the...
nmrlearner Journal club 0 08-18-2011 03:52 AM
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 4 January 2011</br> Jie, Wen , Jihui, Wu , Pei, Zhou</br> Intrinsically disordered proteins (IDPs) play important roles in many critical cellular processes. Due to their limited chemical shift dispersion, IDPs often require four pairs of resonance connectivities (H?, C?, C? and CO) for establishing sequential backbone assignment. Because most conventional 4-D...
nmrlearner Journal club 0 01-05-2011 11:03 AM
[NMR paper] Torsion angle dynamics for NMR structure calculation with the new program DYANA.
Torsion angle dynamics for NMR structure calculation with the new program DYANA. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283-98 Authors: Güntert P, Mumenthaler C, Wüthrich K The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculatio
Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Reson. 1997 Jan;124(1):154-64 Authors: Stein EG, Rice LM, Brünger AT Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances and...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculatio
Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Reson. 1997 Jan;124(1):154-64 Authors: Stein EG, Rice LM, Brünger AT Molecular dynamics in torsion-angle space was applied to nuclear magnetic resonance structure calculation using nuclear Overhauser effect-derived distances and...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Phosphorylation-induced torsion-angle strain in the active center of HPr, detected by
Phosphorylation-induced torsion-angle strain in the active center of HPr, detected by NMR and restrained molecular dynamics refinement. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Phosphorylation-induced torsion-angle strain in the active center of HPr, detected by NMR and restrained molecular dynamics refinement. Protein Sci. 1996...
nmrlearner Journal club 0 08-22-2010 02:27 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:09 PM.


Map