BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-02-2017, 08:33 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR

Membrane remodeling by amyloidogenic and non-amyloidogenic proteins studied by EPR

Publication date: July 2017
Source:Journal of Magnetic Resonance, Volume 280

Author(s): Jobin Varkey, Ralf Langen

The advancement in site-directed spin labeling of proteins has enabled EPR studies to expand into newer research areas within the umbrella of protein-membrane interactions. Recently, membrane remodeling by amyloidogenic and non-amyloidogenic proteins has gained a substantial interest in relation to driving and controlling vital cellular processes such as endocytosis, exocytosis, shaping of organelles like endoplasmic reticulum, Golgi and mitochondria, intracellular vesicular trafficking, formation of filopedia and multivesicular bodies, mitochondrial fusion and fission, and synaptic vesicle fusion and recycling in neurotransmission. Misregulation in any of these processes due to an aberrant protein (mutation or misfolding) or alteration of lipid metabolism can be detrimental to the cell and cause disease. Dissection of the structural basis of membrane remodeling by proteins is thus quite necessary for an understanding of the underlying mechanisms, but it remains a formidable task due to the difficulties of various common biophysical tools in monitoring the dynamic process of membrane binding and bending by proteins. This is largely since membranes generally complicate protein structure analysis and this problem is amplified for structural analysis in the presence of different types of membrane curvatures. Recent EPR studies on membrane remodeling by proteins show that a significant structural information can be generated to delineate the role of different protein modules, domains and individual amino acids in the generation of membrane curvature. These studies also show how EPR can complement the data obtained by high resolution techniques such as X-ray and NMR. This perspective covers the application of EPR in recent studies for understanding membrane remodeling by amyloidogenic and non-amyloidogenic proteins that is useful for researchers interested in using or complimenting EPR to gain better understanding of membrane remodeling. We also discuss how a single protein can generate different type of membrane curvatures using specific conformations for specific membrane structures and how EPR is a versatile tool well-suited to analyze subtle alterations in structures under such modifying conditions which otherwise would have been difficult using other biophysical tools.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR] Postdoctoral position in structural biology of membrane remodeling
From The DNP-NMR Blog: Postdoctoral position in structural biology of membrane remodeling POSTDOCTORAL POSITION AVAILABLE STRUCTURAL BIOLOGY OF MEMBRANE REMODELING
nmrlearner News from NMR blogs 0 05-19-2017 04:01 AM
Dynamics of Methyl Groups in Membrane Proteins Studied by Deterium Solid State NMR Relaxation
Dynamics of Methyl Groups in Membrane Proteins Studied by Deterium Solid State NMR Relaxation Publication date: 16 February 2016 Source:Biophysical Journal, Volume 110, Issue 3, Supplement 1</br> Author(s): Xiaolin Xu, Andrey V. Struts, Aswini Kumar Giri, Trivikram R. Molugu, Charitha Guruge, Samira Faylough, Carolina L. Nascimento, Nasri Nesnas, Victor J. Hruby, Michael F. Brown</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-17-2016 07:50 PM
[NMR paper] Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy.
Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy. J Biomol NMR. 2016 Feb 2; Authors: Tang W, Bhatt A, Smith AN, Crowley PJ, Brady LJ, Long JR Abstract The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium...
nmrlearner Journal club 0 02-04-2016 11:46 AM
Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy
Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy Abstract The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the...
nmrlearner Journal club 0 02-02-2016 08:58 PM
[NMR paper] (1)H, (15)N and (13)C assignment of the amyloidogenic protein medin using fast-pulsing NMR techniques.
(1)H, (15)N and (13)C assignment of the amyloidogenic protein medin using fast-pulsing NMR techniques. Related Articles (1)H, (15)N and (13)C assignment of the amyloidogenic protein medin using fast-pulsing NMR techniques. Biomol NMR Assign. 2015 Sep 16; Authors: Davies HA, Phelan MM, Madine J Abstract Thirty-one proteins are known to form extracellular fibrillar amyloid in humans. Molecular information about many of these proteins in their monomeric, intermediate or fibrillar form and how they aggregate and interact to form...
nmrlearner Journal club 0 09-18-2015 11:20 PM
[NMR paper] Bacterial expression and purification of the amyloidogenic peptide PAPf39 for multidimensional NMR spectroscopy.
Bacterial expression and purification of the amyloidogenic peptide PAPf39 for multidimensional NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Bacterial expression and purification of the amyloidogenic peptide PAPf39 for multidimensional NMR spectroscopy. Protein Expr Purif. 2013 Apr;88(2):196-200 Authors: Shanmuganathan A, Bishop AC, French KC, McCallum SA, Makhatadze GI Abstract PAPf39 is a 39 residue peptide fragment from human...
nmrlearner Journal club 0 08-23-2013 01:07 AM
[NMR paper] The role of disulfide bond in the amyloidogenic state of beta(2)-microglobulin studie
The role of disulfide bond in the amyloidogenic state of beta(2)-microglobulin studied by heteronuclear NMR. Related Articles The role of disulfide bond in the amyloidogenic state of beta(2)-microglobulin studied by heteronuclear NMR. Protein Sci. 2002 Sep;11(9):2218-29 Authors: Katou H, Kanno T, Hoshino M, Hagihara Y, Tanaka H, Kawai T, Hasegawa K, Naiki H, Goto Y beta(2)-Microglobulin (beta2-m) is a major component of dialysis-related amyloid fibrils. Although recombinant beta2-m forms needle-like fibrils by in vitro extension reaction at pH...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Characterization of the structure and dynamics of amyloidogenic variants of human lys
Characterization of the structure and dynamics of amyloidogenic variants of human lysozyme by NMR spectroscopy. Related Articles Characterization of the structure and dynamics of amyloidogenic variants of human lysozyme by NMR spectroscopy. Protein Sci. 2001 Dec;10(12):2525-30 Authors: Chamberlain AK, Receveur V, Spencer A, Redfield C, Dobson CM The structures and dynamics of the native states of two mutational variants of human lysozyme, I56T and D67H, both associated with non-neuropathic systemic amyloidosis, have been investigated by NMR...
nmrlearner Journal club 0 11-19-2010 08:44 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:29 PM.


Map