Related ArticlesMembrane proteins in their native habitat as seen by solid-state NMR spectroscopy.
Protein Sci. 2015 May 13;
Authors: Brown LS, Ladizhansky V
Abstract
Membrane proteins play many critical roles in cells, mediating flow of material and information across cell membranes. They have evolved to perform these functions in the environment of a cell membrane, whose physicochemical properties are often different from those of common cell membrane mimetics used for structure determination. As a result, membrane proteins are difficult to study by traditional methods of structural biology, and they are significantly underrepresented in the protein structure databank. Solid-state Nuclear Magnetic Resonance (SSNMR) has long been considered as an attractive alternative because it allows for studies of membrane proteins in both native-like membranes composed of synthetic lipids and in cell membranes. Over the past decade, SSNMR has been rapidly developing into a major structural method, and a growing number of membrane protein structures obtained by this technique highlights its potential. Here we discuss membrane protein sample requirements, review recent progress in SSNMR methodologies, and describe recent advances in characterizing membrane proteins in the environment of a cellular membrane. This article is protected by copyright. All rights reserved.
PMID: 25973959 [PubMed - as supplied by publisher]
Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy
Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy
Abstract
Membrane proteins play many critical roles in cells, mediating flow of material and information across cell membranes. They have evolved to perform these functions in the environment of a cell membrane, whose physicochemical properties are often different from those of common cell membrane mimetics used for structure determination. As a result, membrane proteins are difficult to study by traditional methods of structural biology, and they are significantly underrepresented in the protein...
[NMR paper] Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy.
Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy.
Structure Determination of Membrane Proteins in Their Native Phospholipid Bilayer Environment by Rotationally Aligned Solid-State NMR Spectroscopy.
Acc Chem Res. 2013 Jul 5;
Authors: Opella SJ
Abstract
One of the most important topics in experimental structural biology is determining the structures of membrane proteins. These structures represent one-third of all of the information...
nmrlearner
Journal club
0
07-09-2013 02:47 PM
[NMR paper] Solid State NMR Strategy for Characterizing Native Membrane Protein Structures.
Solid State NMR Strategy for Characterizing Native Membrane Protein Structures.
Related Articles Solid State NMR Strategy for Characterizing Native Membrane Protein Structures.
Acc Chem Res. 2013 Mar 7;
Authors: Murray DT, Das N, Cross TA
Abstract
Unlike water soluble proteins, the structures of helicaltransmembrane proteins depend on a very complex environment. These proteins sit in the midst of dramatic electrical and chemical gradients and are often subject to variations in the lateral pressure profile, order parameters, dielectric...
nmrlearner
Journal club
0
03-09-2013 11:05 AM
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy
Abstract Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the...
nmrlearner
Journal club
0
09-20-2012 06:06 AM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 20;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Proton-Detected Solid-State NMR Spectroscopy of Fibrillar and Membrane Proteins.
Angew Chem Int Ed Engl. 2011 Apr 14;
Authors: Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez Del Amo JM, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B
nmrlearner
Journal club
0
04-16-2011 12:29 PM
[NMR paper] Solid-state NMR spectroscopy applied to membrane proteins.
Solid-state NMR spectroscopy applied to membrane proteins.
Related Articles Solid-state NMR spectroscopy applied to membrane proteins.
Curr Opin Struct Biol. 2000 Oct;10(5):593-600
Authors: de Groot HJ
One major remaining problem in structural biology is to elucidate the structure and mechanism of function of membrane proteins. On the basis of preliminary information from genome projects, it is now estimated that up to 50,000 different membrane proteins may exist in the human being and that virtually every life process proceeds, sooner or...