BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 09:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy wit

Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents.

Related Articles Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents.

Chembiochem. 2004 Apr 2;5(4):467-73

Authors: Hilty C, Wider G, Fernández C, Wüthrich K

For solution NMR studies of the structure and function of membrane proteins, these macromolecules have to be reconstituted and solubilized in detergent micelles. Detailed characterization of the mixed detergent/protein micelles is then of key importance to validate the results from such studies, and to evaluate how faithfully the natural environment of the protein in the biological membrane is mimicked by the micelle. In this paper, a selection of paramagnetic probes with different physicochemical properties are used to characterize the 60 kDa mixed micelles consisting of about 90 molecules of the detergent dihexanoylphosphatidylcholine (DHPC) and one molecule of the Escherichia coli outer-membrane protein X (OmpX), which had previously been extensively studied by solution NMR techniques. The observation of highly selective relaxation effects on the NMR spectra of OmpX and DHPC from a water-soluble relaxation agent and from nitroxide spin labels attached to lipophilic molecules, confirmed data obtained previously with more complex NMR studies of the diamagnetic OmpX/DHPC system, and yielded additional novel insights into the protein-detergent interactions in the mixed micelles. The application of paramagnetic probes to the well-characterized OmpX/DHPC system indicates that such probes should be widely applicable as an efficient support of NMR studies of the topology of mixed membrane protein-detergent micelles.

PMID: 15185370 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity.
NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. J Biol Chem. 2011 Jul 8;286(27):24394-406 Authors: Bhunia A, Saravanan R, Mohanram H, Mangoni ML, Bhattacharjya S Abstract Temporins are a group of closely related short...
nmrlearner Journal club 0 09-09-2011 06:42 PM
Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy.
Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy. Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy. J Am Chem Soc. 2011 Mar 7; Authors: Cady SD, Wang J, Wu Y, Degrado WF, Hong M The transmembrane domain of the influenza M2...
nmrlearner Journal club 0 03-09-2011 02:20 PM
[NMR paper] Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C
Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C and adrenodoxin. Related Articles Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C and adrenodoxin. Biochemistry. 2003 Jun 17;42(23):7068-76 Authors: Worrall JA, Reinle W, Bernhardt R, Ubbink M The interaction between yeast iso-1-cytochrome c (C102T) and two forms of bovine adrenodoxin, the wild type and a truncated form comprising residues 4-108, has been investigated using a combination of one- and two-dimensional...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Lipid-protein interactions in DHPC micelles containing the integral membrane protein
Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Related Articles Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13533-7 Authors: Fernández C, Hilty C, Wider G, Wüthrich K Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and dihexanoylphosphatidylcholine (DHPC) provided a detailed...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation
13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. Related Articles 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. J Biochem Biophys Methods. 1991 Oct-Nov;23(3):259-61 Authors: YashRoy RC Spinach chloroplast membranes were studied by natural abundance carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy in their normal state and after heat denaturation of membrane proteins. The membrane proteins were denatured by raising the temperature of the sample to 67...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation
13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. Related Articles 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation. J Biochem Biophys Methods. 1991 Oct-Nov;23(3):259-61 Authors: YashRoy RC Spinach chloroplast membranes were studied by natural abundance carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy in their normal state and after heat denaturation of membrane proteins. The membrane proteins were denatured by raising the temperature of the sample to 67...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy.
Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Related Articles Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Biochemistry. 1991 Sep 17;30(37):9084-9 Authors: Heimburg T, Hildebrandt P, Marsh D The interaction of cytochrome c with negatively charged lipids has been studied by resonance Raman...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy.
Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Related Articles Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Biochemistry. 1991 Sep 17;30(37):9084-9 Authors: Heimburg T, Hildebrandt P, Marsh D The interaction of cytochrome c with negatively charged lipids has been studied by resonance Raman...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:05 AM.


Map