BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-11-2020, 09:34 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Mechanistic basis of substrate-O2 coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study [Biochemistry]

Mechanistic basis of substrate-O2 coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study [Biochemistry]

Gaston Courtade, Luisa Ciano, Alessandro Paradisi, Peter J. Lindley, Zarah Forsberg, Morten Sorlie, Reinhard Wimmer, Gideon J. Davies, Vincent G. H. Eiȷsink, Paul H. Walton, Finn L. Aachmann...
Date: 2020-08-11

Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to activate molecular oxygen for subsequent oxidative cleavage of glycosidic bonds. To provide insight into the mode of action of these industrially important enzymes, we have performed an integrated NMR/electron paramagnetic resonance (EPR) study into the detailed aspects of an AA10 LPMO–substrate... Read More


PNAS:
Number: 32
Volume: 117
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Mechanistic basis of substrate-O2 coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study.
Mechanistic basis of substrate-O2 coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study. Related Articles Mechanistic basis of substrate-O2 coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study. Proc Natl Acad Sci U S A. 2020 Jul 28;: Authors: Courtade G, Ciano L, Paradisi A, Lindley PJ, Forsberg Z, Sřrlie M, Wimmer R, Davies GJ, Eijsink VGH, Walton PH, Aachmann FL Abstract Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to...
nmrlearner Journal club 0 07-30-2020 05:28 PM
[ASAP] The Biochemistry of Survival Motor Neuron Protein Is Paving the Way to Novel Therapies for Spinal Muscle AtrophyPublished as part of the Biochemistry series “Biochemistry to Bedside”
The Biochemistry of Survival Motor Neuron Protein Is Paving the Way to Novel Therapies for Spinal Muscle AtrophyPublished as part of the Biochemistry series “Biochemistry to Bedside” https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.9b01124/20200402/images/medium/bi9b01124_0002.gif Biochemistry DOI: 10.1021/acs.biochem.9b01124 http://feeds.feedburner.com/~r/acs/bichaw/~4/YmNXiR52Jpg More...
nmrlearner Journal club 0 04-03-2020 09:41 PM
[NMR paper] NMR Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity.
NMR Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity. Related Articles NMR Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity. Biochemistry. 2016 May 10; Authors: Byeon IL, Byeon CH, Wu T, Mitra M, Singer D, Levin JG, Gronenborn AM Abstract Human APOBEC3B (A3B) is a member of the APOBEC3 (A3) family of cytidine deaminases, which function as DNA mutators and restrict viral pathogens and endogenous...
nmrlearner Journal club 0 05-11-2016 08:04 PM
[NMR paper] Positional specifity of acetylxylan esterases on natural polysaccharide: an NMR study.
Positional specifity of acetylxylan esterases on natural polysaccharide: an NMR study. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Positional specifity of acetylxylan esterases on natural polysaccharide: an NMR study. Biochim Biophys Acta. 2013 Jun;1830(6):3365-72 Authors: Uhliariková I, Vršanská M, McCleary BV, Biely P Abstract BACKGROUND: Microbial degradation of acetylated plant hemicelluloses involves besides enzymes cleaving the glycosidic...
nmrlearner Journal club 0 08-06-2013 11:47 AM
Influence of Substrate Modification and C-Terminal Truncation on the Active Site Structure of Substrate-Bound Heme Oxygenase from Neisseriae meningitidis. A 1H NMR Study
Influence of Substrate Modification and C-Terminal Truncation on the Active Site Structure of Substrate-Bound Heme Oxygenase from Neisseriae meningitidis. A 1H NMR Study http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi200978g/aop/images/medium/bi-2011-00978g_0009.gif Biochemistry DOI: 10.1021/bi200978g http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/BYT7Ijd6pDI More...
nmrlearner Journal club 0 09-22-2011 05:37 AM
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study. Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study. Biochemistry. 2011 Aug 27; Authors: Peng D, Satterlee JD, Ma LH, Dallas JL, Smith KM, Zhang X, Sato M, La Mar GN Abstract Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which...
nmrlearner Journal club 0 08-30-2011 04:52 PM
NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase [Biochemistry]
NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase Sakamoto, K., Kamiya, M., Imai, M., Shinzawa-Itoh, K., Uchida, T., Kawano, K., Yoshikawa, S., Ishimori, K.... Date: 2011-07-26 The final interprotein electron transfer (ET) in the mammalian respiratory chain, from cytochrome c (Cyt c) to cytochrome c oxidase (CcO) is investigated by 1H-15N heteronuclear single quantum coherence spectral analysis. The chemical shift perturbation in isotope-labeled Cyt c induced by addition of unlabeled CcO indicates that the hydrophobic heme periphery and...
nmrlearner Journal club 0 07-26-2011 11:22 PM
[NMR paper] NMR observation of substrate in the binding site of an active sugar-H+ symport protei
NMR observation of substrate in the binding site of an active sugar-H+ symport protein in native membranes. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR observation of substrate in the binding site of an active sugar-H+ symport protein in native membranes. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3877-81 Authors: Spooner PJ, Rutherford NG, Watts A, Henderson PJ NMR methods have been adopted to observe directly the characteristics of substrate...
nmrlearner Journal club 0 08-22-2010 03:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:16 AM.


Map