BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-28-2010, 09:14 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,776
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Mechanism of Enantioselective C-C Bond Formation with Bifunctional Chiral Ru Catalyst

Mechanism of Enantioselective C-C Bond Formation with Bifunctional Chiral Ru Catalysts: NMR and DFT Study

Ilya D. Gridnev, Masahito Watanabe, Hui Wang and Takao Ikariya



Journal of the American Chemical Society
DOI: 10.1021/ja107597w




Source: Journal of the American Chemical Society
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Improved accuracy in measuring one-bond and two-bond 15N,13Cα coupling constants in proteins by double-inphase/antiphase (DIPAP) spectroscopy
Improved accuracy in measuring one-bond and two-bond 15N,13Cα coupling constants in proteins by double-inphase/antiphase (DIPAP) spectroscopy Abstract An extension to HN(CO-α/β-N,Cα-J)-TROSY (Permi and Annila in J Biomol NMR 16:221â??227, 2000) is proposed that permits the simultaneous determination of the four coupling constants 1 J Nâ?²(i)Cα(i), 2 J HN(i)Cα(i), 2 J Cα(iâ??1)Nâ?²(i), and 3 J Cα(iâ??1)HN(i) in 15N,13C-labeled proteins. Contrasting the original scheme, in which two separate subspectra exhibit the 2 J CαNâ?² coupling as inphase and antiphase splitting (IPAP), we...
nmrlearner Journal club 0 06-10-2011 01:41 AM
Solid-State 91Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors
Solid-State 91Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors Aaron J. Rossini, Ivan Hung, Samuel A. Johnson, Carla Slebodnick, Mike Mensch, Paul A. Deck and Robert W. Schurko http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107749b/aop/images/medium/ja-2010-07749b_0012.gif Journal of the American Chemical Society DOI: 10.1021/ja107749b http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/GGw8Igo70Jo
nmrlearner Journal club 0 12-03-2010 08:52 PM
[NMR paper] NMR structure of a bifunctional rhodamine labeled N-domain of troponin C complexed wi
NMR structure of a bifunctional rhodamine labeled N-domain of troponin C complexed with the regulatory "switch" peptide from troponin I: implications for in situ fluorescence studies in muscle fibers. Related Articles NMR structure of a bifunctional rhodamine labeled N-domain of troponin C complexed with the regulatory "switch" peptide from troponin I: implications for in situ fluorescence studies in muscle fibers. Biochemistry. 2003 Apr 22;42(15):4333-48 Authors: Mercier P, Ferguson RE, Irving M, Corrie JE, Trentham DR, Sykes BD The structure...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] 13C NMR chemical shifts can predict disulfide bond formation.
13C NMR chemical shifts can predict disulfide bond formation. Related Articles 13C NMR chemical shifts can predict disulfide bond formation. J Biomol NMR. 2000 Oct;18(2):165-71 Authors: Sharma D, Rajarathnam K The presence of disulfide bonds can be detected unambiguously only by X-ray crystallography, and otherwise must be inferred by chemical methods. In this study we demonstrate that 13C NMR chemical shifts are diagnostic of disulfide bond formation, and can discriminate between cysteine in the reduced (free) and oxidized (disulfide bonded)...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Novel mechanism of surface catalysis of protein adduct formation. NMR studies of the
Novel mechanism of surface catalysis of protein adduct formation. NMR studies of the acetylation of ubiquitin. Related Articles Novel mechanism of surface catalysis of protein adduct formation. NMR studies of the acetylation of ubiquitin. J Biol Chem. 2000 Oct 13;275(41):31908-13 Authors: Macdonald JM, Haas AL, London RE Reactivity of surface lysyl residues of proteins with a broad range of chemical agents has been proposed to be dependent on the catalytic microenvironment of the residue. We have investigated the acetylation of wild type...
nmrlearner Journal club 0 11-19-2010 08:29 PM
NMR Determinations of the Absolute Configuration of ?-Chiral Primary Amines - Organic
NMR Determinations of the Absolute Configuration of ?-Chiral Primary Amines - Organic Letters (ACS Publications) More...
nmrlearner NMR bookmarks 0 08-19-2010 02:34 PM
NMR Spectroscopist - Chemical and Catalyst Science - Golden, Colorado
The NREL are looking for a NMR Spectroscopist (taken from the American Chemical Society's website - chemistryjobs.acs.org ) """ Description The National Renewable Energy Laboratory (NREL), located in beautiful Golden, Colorado, is a leader in the U.S. Department of Energy’s effort to secure an energy future for the nation that is environmentally and economically sustainable. Our mission is to develop renewable energy and energy efficiency technologies and practices, advance related science and engineering and transfer knowledge and innovations to address the nation’s energy and...
jobseeker Job marketplace 0 08-10-2008 02:57 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:45 PM.


Map