BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 08:58 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,776
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate reveal

Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering.

Related Articles Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering.

J Mol Biol. 2002 Sep 27;322(4):841-9

Authors: Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J

The mechanical unfolding of an immunoglobulin domain from the human muscle protein titin (TI I27) has been shown to proceed via a metastable intermediate in which the A-strand is detached. The structure and properties of this intermediate are characterised in this study. A conservative destabilising mutation in the A-strand has no effect on the unfolding force, nor the dependence of the unfolding force on the pulling speed, indicating that the unfolding forces measured in an AFM experiment are those required for the unfolding of the intermediate and not the native state. A mutant of TI I27 with the A-strand deleted (TI I27-A) is studied by NMR and standard biophysical techniques, combined with protein engineering. Molecular dynamics simulations show TI I27-A to be a good model for the intermediate. It has a structure very similar to the native state, and is surprisingly stable. Comparison with a Phi-value analysis of the unfolding pathway clearly shows that the protein unfolds by a different pathway under an applied force than on addition of denaturant.

PMID: 12270718 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Domain Swapping Proceedsvia Complete Unfolding: A 19F- and 1H-NMR Studyof the Cyanovirin-N Protein
Domain Swapping Proceedsvia Complete Unfolding: A 19F- and 1H-NMR Studyof the Cyanovirin-N Protein Lin Liu, In-Ja L. Byeon, Ivet Bahar and Angela M. Gronenborn http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210118w/aop/images/medium/ja-2011-10118w_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja210118w http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/vh5BfRyKD-8
nmrlearner Journal club 0 02-23-2012 07:38 AM
Long-Lived States to Monitor Protein Unfolding by Proton NMR.
Long-Lived States to Monitor Protein Unfolding by Proton NMR. Long-Lived States to Monitor Protein Unfolding by Proton NMR. Chemphyschem. 2011 Aug 31; Authors: Bornet A, Ahuja P, Sarkar R, Fernandes L, Hadji S, Lee SY, Haririnia A, Fushman D, Bodenhausen G, Vasos PR Abstract The relaxation of long-lived states (LLS) corresponds to the slow return to statistical thermal equilibrium between symmetric and antisymmetric proton spin states. This process is remarkably sensitive to the presence of external spins and can be used to obtain...
nmrlearner Journal club 0 09-02-2011 05:40 PM
[NMR paper] The equilibrium unfolding of MerP characterized by multivariate analysis of 2D NMR da
The equilibrium unfolding of MerP characterized by multivariate analysis of 2D NMR data. Related Articles The equilibrium unfolding of MerP characterized by multivariate analysis of 2D NMR data. J Magn Reson. 2005 Jan;172(1):24-30 Authors: Berglund A, Brorsson AC, Jonsson BH, Sethson I A general problem when analysing NMR spectra that reflect variations in the environment of target molecules is that different resonances are affected to various extents. Often a few resonances that display the largest frequency changes are selected as probes to...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Insights into conformation and dynamics of protein GB1 during folding and unfolding b
Insights into conformation and dynamics of protein GB1 during folding and unfolding by NMR. Related Articles Insights into conformation and dynamics of protein GB1 during folding and unfolding by NMR. J Mol Biol. 2004 Jan 30;335(5):1299-307 Authors: Ding K, Louis JM, Gronenborn AM Understanding protein stability requires characterization of structural determinants of the folded and unfolded states. Many proteins are capable of populating partially folded states under specific solution conditions. Occasionally, coexistence of the folded and an...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] A 19F-NMR study of the equilibrium unfolding of membrane-associated D-lactate dehydro
A 19F-NMR study of the equilibrium unfolding of membrane-associated D-lactate dehydrogenase of Escherichia coli. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles A 19F-NMR study of the equilibrium unfolding of membrane-associated D-lactate dehydrogenase of Escherichia coli. Biochemistry. 1996 Dec 24;35(51):16502-9 Authors: Sun ZY, Pratt EA, Simplaceanu V, Ho C Partially folded protein intermediates have been observed by 19F-NMR spectroscopy during the equilibrium unfolding of the...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] NMR study of the cold, heat, and pressure unfolding of ribonuclease A.
NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Related Articles NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Biochemistry. 1995 Jul 11;34(27):8631-41 Authors: Zhang J, Peng X, Jonas A, Jonas J The reversible cold, heat, and pressure unfolding of RNase A and RNase A--inhibitor complex were studied by 1D and 2D 1H NMR spectroscopy. The reversible pressure denaturation experiments in the pressure range from 1 bar to 5 kbar were carried out at pH 2.0 and 10 degrees C. The cold denaturation was...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 2. E
Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 2. Evidence from phosphorus-31 NMR measurements. Related Articles Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 2. Evidence from phosphorus-31 NMR measurements. Biochemistry. 1991 Apr 23;30(16):3880-5 Authors: Spooner PJ, Watts A 31P NMR measurements were conducted to determine the structural and chemical environment of beef heart cardiolipin when bound to cytochrome c. 31P NMR line shapes infer that the majority of lipid remains...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 1. E
Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 1. Evidence from deuterium NMR measurements. Related Articles Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 1. Evidence from deuterium NMR measurements. Biochemistry. 1991 Apr 23;30(16):3871-9 Authors: Spooner PJ, Watts A Deuterium NMR has been used to investigate the structure and dynamic state of cytochrome c complexed with bilayers of cardiolipin. Reductive methylation was employed to prepare lysyl cytochrome c, and deuterium...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:17 AM.


Map