Related ArticlesMeasuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses.
Eur Biophys J. 2014 May 14;
Authors: Yao S, Weber DK, Separovic F, Keizer DW
Abstract
Molecular translational self-diffusion, a measure of diffusive motion, provides information on the effective molecular hydrodynamic radius, as well as information on the properties of media or solution through which the molecule diffuses. Protein translational diffusion measured by pulsed-field gradient nuclear magnetic resonance (PFG-NMR) has seen increased application in structure and interaction studies, as structural changes or protein-protein interactions are often accompanied by alteration of their effective hydrodynamic radii. Unlike the analysis of complex mixtures by PFG-NMR, for monitoring changes of protein translational diffusion under various conditions, such as different stages of folding/unfolding, a partial region of the spectrum or even a single resonance is sufficient. We report translational diffusion coefficients measured by PFG-NMR with a modified stimulated echo (STE) sequence where band-selective pulses are employed for all three (1)H RF pulses. Compared with conventional non-selective sequence, e.g. the BPP-LED sequence, the advantage of this modified band-selective excitation short transient (BEST) version of STE (BEST-STE) sequence is multi-fold, namely: (1) potential sensitivity gain as in generalized BEST-based sequences, (2) water suppression is no longer required as the magnetization of solvent water is not perturbed during the measurement, and (3) dynamic range problems due to the presence of intense resonances from molecules other than the protein or peptide of interest, such as non-deuterated detergent micelles, are avoided.
PMID: 24824112 [PubMed - as supplied by publisher]
[NMR paper] Long-Observation-Window Band-Selective Homonuclear Decoupling: Increased Sensitivity and Resolution in Solid-State NMR Spectroscopy of Proteins
Long-Observation-Window Band-Selective Homonuclear Decoupling: Increased Sensitivity and Resolution in Solid-State NMR Spectroscopy of Proteins
Publication date: Available online 13 September 2013
Source:Journal of Magnetic Resonance</br>
Author(s): Jochem O. Struppe , Chen Yang , Yachong Wang , Roy V. Hernandez , Lisa M. Shamansky , Leonard J. Mueller</br>
Sensitivity and resolution are the two fundamental obstacles to extending solid-state nuclear magnetic resonance to even larger protein systems. Here, a novel long-observation-window band-selective...
nmrlearner
Journal club
0
09-13-2013 12:05 PM
[NMR paper] Efficient CO-CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization
Efficient CO-CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization
Available online 14 March 2013
Publication year: 2013
Source:Journal of Magnetic Resonance</br>
</br>
Robust and efficient band-selective magnetization transfer between CO and CA spins can be achieved in highly deuterated solid proteins by dipolar-based homonuclear cross polarization. The approach is designed for moderate magic-angle spinning rates and high external magnetic fields where the isotropic chemical shift difference of CO and CA considerably exceeds the...
nmrlearner
Journal club
0
03-16-2013 02:22 AM
Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR.
Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR.
Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR.
J Am Chem Soc. 2011 Sep 16;
Authors: Horst R, Horwich AL, Wüthrich K
Abstract
ABSTRACT In structural biology, pulsed field gradient (PFG) NMR for characterization of size and hydrodynamic parameters of macromolecular solutes has the advantage over other techniques that the measurements can be recorded with identical solution...
nmrlearner
Journal club
0
09-17-2011 08:21 PM
Methods to determine slow diffusion coefficients of biomolecules. Applications to Engrailed 2, a partially disordered protein
Methods to determine slow diffusion coefficients of biomolecules. Applications to Engrailed 2, a partially disordered protein
Abstract We present new NMR methods to measure slow translational diffusion coefficients of biomolecules. Like the heteronuclear stimulated echo experiment (XSTE), these new methods rely on the storage of information about spatial localization during the diffusion delay as longitudinal polarization of nuclei with long T1 such as nitrogen-15. The new BEST-XSTE sequence combines features of Band-selective Excitation Short-Transient (BEST) and XSTE methods. By...
nmrlearner
Journal club
0
05-24-2011 10:00 AM
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
Measuring (1)H (N) temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy.
J Biomol NMR. 2011 Mar 18;
Authors: Bouvignies G, Vallurupalli P, Cordes MH, Hansen DF, Kay LE
A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated 'invisible' protein states that exchange...
nmrlearner
Journal club
0
03-23-2011 05:41 PM
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Measuring 1HN temperature coefficients in invisible protein states by relaxation dispersion NMR spectroscopy
Abstract A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated â??invisibleâ?? protein states that exchange with a â??visibleâ?? ground state on the millisecond time-scale. The utility of the approach is demonstrated with an application to an I58D mutant of the Pfl6 Cro protein that undergoes exchange between the native, folded state and a cold...
nmrlearner
Journal club
0
03-22-2011 07:32 PM
[NMR paper] The hydration of proteins in solutions by self-diffusion coefficients. NMR study.
The hydration of proteins in solutions by self-diffusion coefficients. NMR study.
Related Articles The hydration of proteins in solutions by self-diffusion coefficients. NMR study.
Biochim Biophys Acta. 1996 Apr 17;1289(3):312-4
Authors: Baranowska HM, Olszewski KJ
The hydration of the globular (lysozyme, albumin) and fibrillar (fibrinogen) proteins in solution has been determined from the measurements of the self-diffusion coefficient by NMR pulsed gradient method. It has been concluded that the concentration dependencies of the...