BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-14-2021, 10:07 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The Measurement of Relaxation Rates of Degenerate 1H Transitions in Methyl Groups of Proteins Using Acute Angle Radiofrequency Pulses

The Measurement of Relaxation Rates of Degenerate 1H Transitions in Methyl Groups of Proteins Using Acute Angle Radiofrequency Pulses

Publication date: Available online 14 July 2021

Source: Journal of Magnetic Resonance

Author(s): Vitali Tugarinov, G. Marius Clore



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Probing Side-Chain Dynamics in Proteins by NMR Relaxation of Isolated (13)C Magnetization Modes in (13)CH(3) Methyl Groups
Probing Side-Chain Dynamics in Proteins by NMR Relaxation of Isolated (13)C Magnetization Modes in (13)CH(3) Methyl Groups The dynamics of methyl-bearing side chains in proteins were probed by ^(13)C relaxation measurements of a number of ^(13)C magnetization modes in selectively ^(13)CH(3)-labeled methyl groups of proteins. We first show how ^(13)C magnetization modes in a ^(13)CH(3) spin-system can be isolated using acute-angle ¹H radio-frequency pulses. The parameters of methyl-axis dynamics, a measure of methyl-axis ordering (S(axis)²) and the correlation time of fast local methyl-axis...
nmrlearner Journal club 0 03-27-2021 02:09 AM
Optimized selection of slow-relaxing 13 C transitions in methyl groups of proteins: application to relaxation dispersion
Optimized selection of slow-relaxing 13 C transitions in methyl groups of proteins: application to relaxation dispersion Abstract Optimized selection of the slow-relaxing components of single-quantum 13C magnetization in 13CH3 methyl groups of proteins using acute (
nmrlearner Journal club 0 10-04-2020 05:33 AM
NMR relaxation parameters of methyl groups as a tool to map the interfaces of helixâ??helix interactions in membrane proteins
NMR relaxation parameters of methyl groups as a tool to map the interfaces of helixâ??helix interactions in membrane proteins Abstract In the case of soluble proteins, chemical shift mapping is used to identify the intermolecular interfaces when the NOE-based calculations of spatial structure of the molecular assembly are impossible or impracticable. However, the reliability of the membrane protein interface mapping based on chemical shifts or other relevant parameters was never assessed. In the present work, we investigate the predictive power of...
nmrlearner Journal club 0 10-24-2017 05:09 PM
Dynamics of Methyl Groups in Membrane Proteins Studied by Deterium Solid State NMR Relaxation
Dynamics of Methyl Groups in Membrane Proteins Studied by Deterium Solid State NMR Relaxation Publication date: 16 February 2016 Source:Biophysical Journal, Volume 110, Issue 3, Supplement 1</br> Author(s): Xiaolin Xu, Andrey V. Struts, Aswini Kumar Giri, Trivikram R. Molugu, Charitha Guruge, Samira Faylough, Carolina L. Nascimento, Nasri Nesnas, Victor J. Hruby, Michael F. Brown</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-17-2016 07:50 PM
Measurement of 15N relaxation rates in perdeuterated proteins by TROSY-based methods
Measurement of 15N relaxation rates in perdeuterated proteins by TROSY-based methods <div class="Abstract" lang="en">Abstract <div class="normal">While extracting dynamics parameters from backbone 15N relaxation measurements in proteins has become routine over the past two decades, it is increasingly recognized that accurate quantitative analysis can remain limited by the potential presence of systematic errors associated with the measurement of 15N R1 and R2 or R1Ï? relaxation rates as well as heteronuclear 15N-{1H} NOE values. We show that systematic errors in such measurements can...
nmrlearner Journal club 0 06-16-2012 06:01 AM
Observation and Relaxation Properties of Individual Fast-Relaxing Proton Transitions in [13CH3]-Methyl-Labeled, Deuterated Proteins
Observation and Relaxation Properties of Individual Fast-Relaxing Proton Transitions in -Methyl-Labeled, Deuterated Proteins Publication year: 2012 Source:Journal of Magnetic Resonance</br> Hechao Sun, Vitali Tugarinov</br> A pair of NMR experiments is developed for separation of individual fast-relaxing transitions in 13CH3 methyl groups of methyl-protonated, highly deuterated proteins, and the measurement of their relaxation rates. Intra-methyl 1H-1H/1H-13C dipole-dipole cross-correlated spin relaxation that differentiates the rates of the fast-relaxing transitions...
nmrlearner Journal club 0 03-09-2012 09:16 AM
Observation and Relaxation Properties of Individual Fast-Relaxing Proton Transitions in [CH3]-Methyl-Labeled, Deuterated Proteins
Observation and Relaxation Properties of Individual Fast-Relaxing Proton Transitions in -Methyl-Labeled, Deuterated Proteins Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 2 March 2012</br> Hechao*Sun, Vitali*Tugarinov</br> A pair of NMR experiments is developed for separation of individual fast-relaxing transitions inCH3methyl groups of methyl-protonated, highly deuterated proteins, and the measurement of their relaxation rates. Intra-methylH-H/H-C dipole-dipole cross-correlated spin relaxation that differentiates the rates of the fast-relaxing...
nmrlearner Journal club 0 03-06-2012 06:04 AM
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange Abstract Although originally designed for broadband inversion and decoupling in NMR spectroscopy, recent methodological developments have introduced adiabatic fast passage (AFP) pulses into the field of protein dynamics. AFP pulses employ a frequency sweep, and have not only superior inversion properties with respect to offset effects, but they are also easily implemented into a pulse sequence. As magnetization is dragged from the +z to...
nmrlearner Journal club 0 09-30-2011 08:01 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:08 PM.


Map