Abstract Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electronâ??electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k â??1, which was 0.037 ± 0.005 minâ??1 derived from DEER experiments with a corresponding half-life time of 18.7 min. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to proteinâ??protein and protein-DNA complex studies.
Content Type Journal Article
Category Article
Pages 1-12
DOI 10.1007/s10858-012-9685-7
Authors
Yunhuang Yang, Department of Chemistry and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Miami University, Oxford, OH 45056, USA
Theresa A. Ramelot, Department of Chemistry and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Miami University, Oxford, OH 45056, USA
Shuisong Ni, Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
Robert M. McCarrick, Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
Michael A. Kennedy, Department of Chemistry and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Miami University, Oxford, OH 45056, USA
A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants
A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants
Abstract 15N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R 1 and R 2. Here, the extent of...
nmrlearner
Journal club
0
11-14-2012 08:07 AM
[U. of Ottawa NMR Facility Blog] Measurement of Long Range C H Coupling Constants
Measurement of Long Range C H Coupling Constants
The stereochemistry of compounds is assigned very often with proton - proton NOE's by applying the 2D NOESY technique or the 1D selective gradient NOESY technique. These methods fail, however when the distance between protons is too large to measure an NOE. When faced with this situation, it may be possible to measure long range proton - carbon coupling constants which are able to provide the necessary information. Three-bond carbon - proton couplings follow a Karplus relationship where the magnitude of the coupling constant is related to...
nmrlearner
News from NMR blogs
0
08-17-2012 10:44 PM
Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme
Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 216</br>
Elka R. Georgieva, Aritro S. Roy, Vladimir M. Grigoryants, Petr P. Borbat, Keith A. Earle, Charles P. Scholes, Jack H. Freed</br>
Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant...
nmrlearner
Journal club
0
03-13-2012 03:33 PM
Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme
Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme
Publication year: 2012
Source: Journal of Magnetic Resonance, Available online 24 January 2012</br>
Elka R.*Georgieva, Aritro S.*Roy, Vladimir M.*Grigoryants, Petr P.*Borbat, Keith A.*Earle, ...</br>
Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant could possibly affect the...
[NMR paper] Determination of the electron relaxation rates in paramagnetic metal complexes: appli
Determination of the electron relaxation rates in paramagnetic metal complexes: applicability of available NMR methods.
Related Articles Determination of the electron relaxation rates in paramagnetic metal complexes: applicability of available NMR methods.
J Magn Reson. 2004 Apr;167(2):169-77
Authors: Jensen MR, Led JJ
Four different approaches for determining the electron relaxation rates in paramagnetic metallo-proteins are investigated, using a paramagnetic Ni2+ complex of a protein as an example. All four approaches rely on the...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3â?? for protein structure
Abstract Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and proteinâ??ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, 3â??, can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of 3â?? to protein, allowing quantitative distance measurements for nuclear spins...