Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion [Biophysics and Computational Biology]
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion [Biophysics and Computational Biology]
Meinhold, D. W., Wright, P. E....
Date: 2011-05-31
Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use 15N, , and 13CO NMR R2 relaxation dispersion to investigate spontaneous unfolding and refolding events of native apomyoglobin. Above pH 5.0, dispersion is dominated by processes involving fluctuations of the F-helix region, which is invisible in NMR spectra. Measurements of R2 dispersion for residues contacted by the F-helix region in the native (N) structure reveal a transient state formed by local unfolding of helix F and undocking from the protein core. A similar state was detected at pH 4.75–4.95 and determined to be an on-pathway intermediate (I1) in a linear three-state unfolding scheme (N?I1?MG) leading to a transiently populated molten globule (MG) state. The slowest steps in unfolding and refolding are N*->*I1 (36*s-1) and MG*->*I1 (26*s-1), respectively. Differences in chemical shift between N and I1 are very small, except in regions adjacent to helix F, showing that their core structures are similar. Chemical shift changes between the N and MG states, obtained from R2 dispersion, reveal that the transient MG state is structurally similar to the equilibrium MG observed previously at high temperature and low pH. Analysis of MG state chemical shifts shows the location of residual helical structure in the transient intermediate and identifies regions that unfold or rearrange into nonnative structure during the N*->*MG transition. The experiments also identify regions of energetic frustration that “crack” during unfolding and impede the refolding process. Read More
PNAS:
Number: 22
Volume: 108
Did you find this post helpful? |
Similar Threads
Thread
Thread Starter
Forum
Replies
Last Post
Ultrahigh resolution protein structures using NMR chemical shift tensors [Biophysics and Computational Biology]
Ultrahigh resolution protein structures using NMR chemical shift tensors
Wylie, B. J., Sperling, L. J., Nieuwkoop, A. J., Franks, W. T., Oldfield, E., Rienstra, C. M....
Date: 2011-10-11
NMR chemical shift tensors (CSTs) in proteins, as well as their orientations, represent an important new restraint class for protein structure refinement and determination. Here, we present the first determination of both CST magnitudes and orientations for 13C? and 15N (peptide backbone) groups in a protein, the ?1 IgG binding domain of protein G from Streptococcus spp., GB1. Site-specific 13C? and...
nmrlearner
Journal club
0
10-12-2011 06:37 AM
Random phase detection in multidimensional NMR [Biophysics and Computational Biology]
Random phase detection in multidimensional NMR
Maciejewski, M. W., Fenwick, M., Schuyler, A. D., Stern, A. S., Gorbatyuk, V., Hoch, J. C....
Date: 2011-10-04
Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency...
nmrlearner
Journal club
0
10-04-2011 08:47 PM
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR [Biophysics and Computational Biology]
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR
Kato, H., van Ingen, H., Zhou, B.-R., Feng, H., Bustin, M., Kay, L. E., Bai, Y....
Date: 2011-07-26
Chromatin structure and function are regulated by numerous proteins through specific binding to nucleosomes. The structural basis of many of these interactions is unknown, as in the case of the high mobility group nucleosomal (HMGN) protein family that regulates various chromatin functions, including transcription. Here, we report the architecture of the HMGN2-nucleosome...
nmrlearner
Journal club
0
07-26-2011 11:22 PM
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method [Biophysics and Computational Biology]
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method
Verardi, R., Shi, L., Traaseth, N. J., Walsh, N., Veglia, G....
Date: 2011-05-31
Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and...
nmrlearner
Journal club
0
05-31-2011 11:41 PM
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin [Biophysics and Computational Biology]
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin
Struts, A. V., Salgado, G. F. J., Brown, M. F....
Date: 2011-05-17
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state 2H NMR relaxation allows investigation of light-induced changes in local ps–ns time scale motions of retinal bound to rhodopsin. Site-specific 2H labels were introduced into methyl groups of the...
nmrlearner
Journal club
0
05-17-2011 08:40 PM
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Proc Natl Acad Sci U S A. 2011 May 11;
Authors: Meinhold DW, Wright PE
Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use (15)N, , and (13)CO NMR R(2)...
nmrlearner
Journal club
0
05-13-2011 02:40 PM
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy [Biophysics and Computational Biology]
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy
Masterson, L. R., Shi, L., Metcalfe, E., Gao, J., Taylor, S. S., Veglia, G....
Date: 2011-04-26
Protein kinase A (PKA) is a ubiquitous phosphoryl transferase that mediates hundreds of cell signaling events. During turnover, its catalytic subunit (PKA-C) interconverts between three major conformational states (open, intermediate, and closed) that are dynamically and allosterically activated by nucleotide binding. We show that the structural transitions between these...
nmrlearner
Journal club
0
04-27-2011 04:16 AM
[NMR paper] Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion
Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR.
Related Articles Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR.
Nature. 2004 Jul 29;430(6999):586-90
Authors: Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE
Many biochemical processes proceed through the formation of functionally significant intermediates. Although the identification and characterization of such species can provide vital clues about the mechanisms of the...