BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-30-2011, 08:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Measurement of amide hydrogen exchange rates with the use of radiation damping

Measurement of amide hydrogen exchange rates with the use of radiation damping


Abstract A simple method for measuring amide hydrogen exchange rates is presented, which is based on the selective inversion of water magnetization with the use of radiation damping. Simulations show that accurate exchange rates can be measured despite the complications of radiation damping and cross relaxation to the exchange process between amide and water protons. This method cannot eliminate the contributions of the exchange-relayed NOE and direct NOE to the measured exchange rates, but minimize the direct NOE contribution. In addition, the amides with a significant amount of such indirect contributions are possible to be identified from the shape of the exchange peak intensity profiles or/and from the apparent relaxation rates of amide protons which are extracted from fitting the intensity profiles to an equation established here for our experiment. The method was tested on ubiquitin and also applied to an acyl carrier protein. The amide exchange rates for the acyl carrier protein at two pHs indicate that the entire protein is highly dynamic on the second timescale. Low protection factors for the residues in the regular secondary structural elements also suggest the presence of invisible unfolded species. The highly dynamic nature of the acyl carrier protein may be crucial for its interactions with its substrate and enzymes.

  • Content Type Journal Article
  • Category Article
  • Pages 151-162
  • DOI 10.1007/s10858-011-9549-6
  • Authors
    • Jing-Song Fan, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore
    • Jackwee Lim, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore
    • Binhan Yu, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore
    • Daiwen Yang, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore


Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Radiation Damping on Cryoprobes
Radiation Damping on Cryoprobes Publication year: 2011 Source: Journal of Magnetic Resonance, Available online 9 September 2011</br> Dmitry*Shishmarev, Gottfried*Otting</br> Radiation damping on 600 and 800 MHz cryoprobes was investigated. The phase angle ? between a vector 90phase shifted to the precessing magnetization and the rf field induced in the coil was found to depend markedly on whether an FID was being acquired or not. The magnitude of the radiation-damping field was sufficiently strong to restore 95% of the equilibrium water magnetization of a 90% H2O sample in a 5 mm...
nmrlearner Journal club 0 09-12-2011 09:00 PM
[NMR paper] Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from 15N-1H N
Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from 15N-1H NMR spectra. Related Articles Amide proton hydrogen exchange rates for sperm whale myoglobin obtained from 15N-1H NMR spectra. Protein Sci. 2000 Jan;9(1):186-93 Authors: Cavagnero S, Thériault Y, Narula SS, Dyson HJ, Wright PE The hydrogen exchange behavior of exchangeable protons in proteins can provide important information for understanding the principles of protein structure and function. The positions and exchange rates of the slowly-exchanging amide...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] Stopped-flow NMR measurement of hydrogen exchange rates in reduced horse cytochrome c
Stopped-flow NMR measurement of hydrogen exchange rates in reduced horse cytochrome c under strongly destabilizing conditions. Related Articles Stopped-flow NMR measurement of hydrogen exchange rates in reduced horse cytochrome c under strongly destabilizing conditions. Proteins. 1998 Aug 1;32(2):241-7 Authors: Bhuyan AK, Udgaonkar JB A procedure to measure exchange rates of fast exchanging protein amide hydrogens by time-resolved NMR spectroscopy following in situ initiation of the reaction by diluting a native protein solution into an...
nmrlearner Journal club 0 11-17-2010 11:15 PM
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state N
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy Abstract We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15Nâ??T 1 timescales). We observed chemical exchange for 6...
nmrlearner Journal club 0 10-27-2010 08:51 AM
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state N
Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy. Related Articles Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy. J Biomol NMR. 2010 Oct 20; Authors: Del Amo JM, Fink U, Reif B We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that...
nmrlearner Journal club 0 10-22-2010 06:02 AM
[NMR paper] Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mas
Human recombinant FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Human recombinant FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. Protein Sci. 1997 Oct;6(10):2203-17 ...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Rapid amide proton exchange rates in peptides and proteins measured by solvent quench
Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR. Protein Sci. 1995 Apr;4(4):804-14 Authors: Zhang YZ,...
nmrlearner Journal club 0 08-22-2010 03:41 AM
15NH/D-SOLEXSY experiment for accurate measurement of amide solvent exchange rates: a
Abstract Amide solvent exchange rates are regarded as a valuable source of information on structure/dynamics of unfolded (disordered) proteins. Proton-based saturation transfer experiments, normally used to measure solvent exchange, are known to meet some serious difficulties. The problems mainly arise from the need to (1) manipulate water magnetization and (2) discriminate between multiple magnetization transfer pathways that occur within the proton pool. Some of these issues are specific to unfolded proteins. For example, the compensation scheme used to cancel the Overhauser effect in the...
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:58 PM.


Map