BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default MCD, EPR and NMR spectroscopic studies of rabbit hemopexin and its heme binding domai

MCD, EPR and NMR spectroscopic studies of rabbit hemopexin and its heme binding domain.

Related Articles MCD, EPR and NMR spectroscopic studies of rabbit hemopexin and its heme binding domain.

Biochim Biophys Acta. 1995 Dec 6;1253(2):215-23

Authors: Cox MC, Le Brun N, Thomson AJ, Smith A, Morgan WT, Moore GR

Heme binding to rabbit hemopexin and its domain I, obtained by proteolytic cleavage of intact hemopexin, was studied by EPR, MCD and 1H-NMR spectroscopies. The data obtained support the proposal that the heme Fe(III) is coordinated by two histidine ligands (Morgan et al. (1988) J. Biol. Chem. 263, 8220-8225; Muster et al. (1991) J. Protein Chem. 10, 123-128) and are inconsistent with recently reported mutagenesis studies indicating that bis-histidine ligation is unlikely (Satoh et al. (1994) Proc. Natl. Acad. Sci. USA 91, 8423-8427). Although the MCD data are consistent with both bis-histidine and histidine/lysine ligation, the EPR spectra are typical of bis-histidine ligation. Overall the magneto-optical spectra are characteristic for bis-histidine ligation. The EPR and NMR data indicate that there is a difference in the heme environments of the intact hemopexin and its domain I but overall the spectroscopic information suggests heme bound to domain I has the same ligands as intact hemopexin. The 1H-NMR studies indicate that heme binding to domain I perturbs at least 4 of the 5 histidines. This is consistent with axial ligation of the heme by two histidines, and a conformational change induced by heme binding affecting two more. Interestingly, resonances of the carbohydrate bound to intact hemopexin and domain I were also perturbed by heme binding. pH dependence studies showed that heme remained bound to intact hemopexin over the pH range 6.5-10.0 without any major change in the ligation or environment of the heme.

PMID: 8519805 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR and ICP spectroscopic analysis of the DNA-binding domain of the Drosophila GCM pr
NMR and ICP spectroscopic analysis of the DNA-binding domain of the Drosophila GCM protein reveals a novel Zn2+ -binding motif. Related Articles NMR and ICP spectroscopic analysis of the DNA-binding domain of the Drosophila GCM protein reveals a novel Zn2+ -binding motif. Protein Eng. 2003 Apr;16(4):247-54 Authors: Shimizu M, Hiroaki H, Kohda D, Hosoya T, Akiyama-Oda Y, Hotta Y, Morita EH, Morikawa K Drosophila GCM (glial cell missing) is a novel DNA-binding protein that determines the fate of glial precursors from the neural default to glia....
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] NMR spectroscopic studies of the hydrogenosomal [2Fe-2S] ferredoxin from Trichomonas
NMR spectroscopic studies of the hydrogenosomal ferredoxin from Trichomonas vaginalis: hyperfine-shifted 1H resonances. Related Articles NMR spectroscopic studies of the hydrogenosomal ferredoxin from Trichomonas vaginalis: hyperfine-shifted 1H resonances. J Inorg Biochem. 1998 Dec;72(3-4):127-31 Authors: Liu HY, Germanas JP The hyperfine-shifted 1H NMR resonances of oxidized and reduced Trichomonas vaginalis ferredoxin, a functionally unique ferredoxin, have been studied. The oxidized protein spectrum displayed a pattern of six broad...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Essential dynamics from NMR clusters: dynamic properties of the Myb DNA-binding domai
Essential dynamics from NMR clusters: dynamic properties of the Myb DNA-binding domain and a hinge-bending enhancing variant. Related Articles Essential dynamics from NMR clusters: dynamic properties of the Myb DNA-binding domain and a hinge-bending enhancing variant. Methods. 1998 Mar;14(3):318-28 Authors: van Aalten DM, Grotewold E, Joshua-Tor L Application of the "essential dynamics" method to the NMR cluster of structures for the R2R3 DNA-binding domain of the mouse c-Myb transcriptional activator is described. Using this method, large...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear or
NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear orphan receptor, human estrogen related receptor-2. The carboxyl-terminal extension to the zinc-finger region is unstructured in the free form of the protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear orphan receptor, human estrogen related receptor-2. The carboxyl-terminal extension to the zinc-finger region...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Proton NMR study of the heme complex of hemopexin.
Proton NMR study of the heme complex of hemopexin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Proton NMR study of the heme complex of hemopexin. Biochim Biophys Acta. 1994 Jul 6;1200(2):161-6 Authors: Deeb RS, Muller-Eberhard U, Peyton DH Proton nuclear magnetic resonance spectroscopy of the complex of heme with hemopexin, a plasma protein with an exceptionally high affinity for heme, is reported. Characteristic spectra are shown for heme.hemopexin of cow, human,...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit
Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit with added ligands. Related Articles Proton NMR of Escherichia coli sulfite reductase: studies of the heme protein subunit with added ligands. Biochemistry. 1993 Aug 31;32(34):8782-91 Authors: Kaufman J, Siegel LM, Spicer LD The heme protein subunit of sulfite reductase (SiR-HP; M(r) 64,000) from Escherichia coli as isolated contains the isobacteriochlorin siroheme exchange-coupled to a cluster in the 2+ oxidation state. SiR-HP in the presence of a suitable...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR paper] 1H NMR spectroscopic studies on the interactions between human plasma antithrombin II
1H NMR spectroscopic studies on the interactions between human plasma antithrombin III and defined low molecular weight heparin fragments. Related Articles 1H NMR spectroscopic studies on the interactions between human plasma antithrombin III and defined low molecular weight heparin fragments. Biochemistry. 1992 Mar 3;31(8):2286-94 Authors: Horne A, Gettins P The effects of length and composition upon the antithrombin-binding properties of heparin have been investigated for two series of structurally related heparin oligosaccharides. Each...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket st
1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5. Related Articles 1H NMR study of the role of heme carboxylate side chains in modulating heme pocket structure and the mechanism of reconstitution of cytochrome b5. Biochemistry. 1991 Feb 19;30(7):1878-87 Authors: Lee KB, La Mar GN, Pandey RK, Rezzano IN, Mansfield KE, Smith KM 1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:44 PM.


Map