BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-29-2012, 01:00 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default MaxOcc: a web portal for maximum occurrence analysis

MaxOcc: a web portal for maximum occurrence analysis


Abstract The MaxOcc web portal is presented for the characterization of the conformational heterogeneity of two-domain proteins, through the calculation of the Maximum Occurrence that each protein conformation can have in agreement with experimental data. Whatever the real ensemble of conformations sampled by a protein, the weight of any conformation cannot exceed the calculated corresponding Maximum Occurrence value. The present portal allows users to compute these values using any combination of restraints like pseudocontact shifts, paramagnetism-based residual dipolar couplings, paramagnetic relaxation enhancements and small angle X-ray scattering profiles, given the 3D structure of the two domains as input. MaxOcc is embedded within the NMR grid services of the WeNMR project and is available via the WeNMR gateway at http://py-enmr.cerm.unifi.it/access/index/maxocc. It can be used freely upon registration to the grid with a digital certificate.

  • Content Type Journal Article
  • Category Article
  • Pages 1-10
  • DOI 10.1007/s10858-012-9638-1
  • Authors
    • Ivano Bertini, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
    • Lucio Ferella, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
    • Claudio Luchinat, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
    • Giacomo Parigi, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
    • Maxim V. Petoukhov, EMBL, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
    • Enrico Ravera, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
    • Antonio Rosato, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
    • Dmitri I. Svergun, EMBL, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany


Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 215</br> Claudio Luchinat, Malini Nagulapalli, Giacomo Parigi, Luca Sgheri</br> Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively placed...
nmrlearner Journal club 0 03-09-2012 09:16 AM
[NMRpipe Yahoo group] How to collapse multiplets into singlets by Maximum entropy algorith
How to collapse multiplets into singlets by Maximum entropy algorith Hi, Recently, I ran a 3D HCC-TOCSY experiment on a uniformly 13C labeled sample. Therefore, all peaks are split due to carbon-carbon coupling. The paper More...
NMRpipe Yahoo group news News from other NMR forums 0 02-15-2012 03:40 AM
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins Publication year: 2011 Source: Journal of Magnetic Resonance, Available online 30 December 2011</br> Claudio*Luchinat, Malini*Nagulapalli, Giacomo*Parigi, Luca*Sgheri</br> Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively...
nmrlearner Journal club 0 12-31-2011 10:40 AM
A Grid-enabled web portal for NMR structure refinement with AMBER.
A Grid-enabled web portal for NMR structure refinement with AMBER. A Grid-enabled web portal for NMR structure refinement with AMBER. Bioinformatics. 2011 Jul 14; Authors: Bertini I, Case DA, Ferella L, Giachetti A, Rosato A MOTIVATION: The typical workflow for NMR structure determination involves collecting thousands of conformational restraints, calculating a bundle of 20-40 conformers in agreement with them and refining the energetics of these conformers. The structure calculation step employs simulated annealing based on molecular dynamics...
nmrlearner Journal club 0 07-16-2011 07:28 PM
[BMNRC community] HADDOCK Software web portal
HADDOCK Software web portal http://haddock.chem.uu.nl/index.html Go to BMNRC community to find more info about this topic.
nmrlearner News from other NMR forums 0 09-02-2010 04:59 AM
[NMR paper] Theory and application of the maximum likelihood principle to NMR parameter estimatio
Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data. Related Articles Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data. J Biomol NMR. 1995 Apr;5(3):245-58 Authors: Chylla RA, Markley JL A general theory has been developed for the application of the maximum likelihood (ML) principle to the estimation of NMR parameters (frequency and amplitudes) from multidimensional time-domain NMR data. A computer program (ChiFit)...
nmrlearner Journal club 0 08-22-2010 03:41 AM
Automatic maximum entropy spectral reconstruction in NMR
Automatic maximum entropy spectral reconstruction in NMR Mehdi Mobli, Mark W. Maciejewski, Michael R. Gryk and Jeffrey C. Hoch Journal of Biomolecular NMR; 2007; 39(2) pp 133 - 139 Abstract: Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time...
stewart Journal club 0 08-05-2008 01:24 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:36 AM.


Map