Related ArticlesMass spectrometry and NMR analysis of ligand binding by human liver fatty acid binding protein.
J Mass Spectrom. 2013 Aug;48(8):i
Authors: Santambrogio C, Favretto F, D'Onofrio M, Assfalg M, Grandori R, Molinari H
Abstract
Protein-ligand interactions are driven by many factors, including protein conformation and pH of the solution. Electrospray mass spectrometry can reveal the degree of protein folding from the distribution of charges imparted to the protein molecule. Additional information about protein-ligand affinity can be derived by fragmenting the complex using MS-MS. Another analytical tool not often combined with mass spectrometry but which can also illuminate information about protein structure and ligand binding is NMR. In the Special Feature the laboratories of Grandori at the University of Milano-Bicocca and Molinari at the University of Verona use these two analytical tools to study the binding of human liver fatty acid binding protein (hL-FABP) with two fatty acids, oleic acid or palmitic acid. The complementarity of the tools are shown. From ligand titrations ESI-MS shows that a maximum number of fatty acid molecules bind with hL-FABP with a peferential affinity for oleic acid over palmitic acid while titration studies with 13C NMR and 2D NMR reveal additional information suggesting polarity interactions drive the binding as well as solvent accessability to the binding sites within the folded protein.
[NMR paper] Identification of differential protein binding affinities in an atropisomeric pharmaceutical compound using non-covalent mass spectrometry, equilibrium dialysis and NMR.
Identification of differential protein binding affinities in an atropisomeric pharmaceutical compound using non-covalent mass spectrometry, equilibrium dialysis and NMR.
Related Articles Identification of differential protein binding affinities in an atropisomeric pharmaceutical compound using non-covalent mass spectrometry, equilibrium dialysis and NMR.
Anal Chem. 2013 May 22;
Authors: Maple HJ, Garlish RA, Whitcombe I, Hold A, Prosser CE, Ford D, Mackenzie H, Crosby J, Porter J, Taylor RJ, Crump MP
Abstract
Atropisomerism of...
nmrlearner
Journal club
0
05-24-2013 10:44 PM
DEER in Biological Multispin-Systems: A Case Study on the Fatty Acid Binding to Human Serum Albumin
DEER in Biological Multispin-Systems: A Case Study on the Fatty Acid Binding to Human Serum Albumin
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 March 2011</br>
Matthias J.N., Junk , Hans W., Spiess , Dariush, Hinderberger</br>
In this study, self-assembled systems of human serum albumin (HSA) and spin-labeled fatty acids are characterized by double electron–electron resonance (DEER). HSA, being the most important transport protein of the human blood, is capable to host up to seven paramagnetic fatty acid...
nmrlearner
Journal club
0
03-11-2011 05:00 PM
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins.
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins.
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins.
Biochemistry. 2011 Jan 12;
Authors: He Y, Estephan R, Yang X, Vela A, Wang H, Bernard C, Stark RE
Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to...
[NMR paper] Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C
Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C NMR and fluorescence study.
Related Articles Interaction of chicken liver basic fatty acid-binding protein with fatty acids: a 13C NMR and fluorescence study.
Biochemistry. 2001 Oct 23;40(42):12604-11
Authors: Beringhelli T, Goldoni L, Capaldi S, Bossi A, Perduca M, Monaco HL
Two different groups of liver fatty acid-binding proteins (L-FABPs) are known: the mammalian type and the basic type. Very few members of this second group of L-FABPs have been...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] Lipid analysis of human HDL and LDL by MALDI-TOF mass spectrometry and (31)P-NMR.
Lipid analysis of human HDL and LDL by MALDI-TOF mass spectrometry and (31)P-NMR.
Related Articles Lipid analysis of human HDL and LDL by MALDI-TOF mass spectrometry and (31)P-NMR.
J Lipid Res. 2001 Sep;42(9):1501-8
Authors: Schiller J, Zschörnig O, Petkovi? M, Müller M, Arnhold J, Arnold K
The analysis of HDL and LDL is important for the further understanding of atherosclerosis because changes of the protein and lipid moieties occur under pathological conditions. Because destruction of lipids leads to the formation of well-defined products...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange.
Biochemistry. 1997 Feb 25;36(8):2278-90
Authors: Hodsdon ME, Cistola DP
The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange.
Biochemistry. 1997 Feb 25;36(8):2278-90
Authors: Hodsdon ME, Cistola DP
The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...