[NMR paper] MAS solid state NMR of proteins: simultaneous (15)N- (13)CA and (15)N- (13)CO dipolar recoupling via low-power symmetry-based RF pulse schemes.
MAS solid state NMR of proteins: simultaneous (15)N- (13)CA and (15)N- (13)CO dipolar recoupling via low-power symmetry-based RF pulse schemes.
J Biomol NMR. 2015 Feb 25;
Authors: Herbst C, Bellstedt P, Görlach M, Ramachandran R
Abstract
The generation of efficient RN n (?)s,(?)k symmetry-based low-power RF pulse schemes for simultaneous (15)N-(13)CA and (15)N-(13)CO dipolar recoupling is demonstrated. The method involves mixing schemes employing phase and amplitude-modulated dual band-selective 180° pulses as basic "R" element and tailoring of the RF field-modulation profile of the 180° pulses so as to obtain efficient magnetisation transfer characteristics over the resonance offset range of the nuclei involved. Mixing schemes leading to simultaneous (15)N-(13)CA and (15)N-(13)CO dipolar recoupling would permit the one-shot acquisition of different chemical shift correlation spectra that are typically utilized for protein backbone resonance assignments and thereby save data acquisition time. At representative MAS frequencies the efficacies of the mixing schemes presented here have been experimentally demonstrated via the simultaneous acquisition of {3D CONH and 3D CANH}, {3D CONH and 3D CO(CA)NH} and {3D CONH, 3D CANH, 3D CO(CA)NH and 3D CA(CO)NH} spectra generated via the magnetisation transfer pathways (1)H*->*(13)CO*->*(15)N*->*(1)H (CONH), (1)H*->*(13)CA*->*(15)N*->*(1)H (CANH) and (1)H*->*(13)CO*->*(13)CA*->*(15)N*->*(1)H (CO(CA)NH) and (1)H*->*(13)CA*->*(13)CO*->*(15)N*->*(1)H (CA(CO)NH).
PMID: 25712239 [PubMed - as supplied by publisher]
MAS solid state NMR of proteins: simultaneous 15 Nâ?? 13 CA and 15 Nâ?? 13 CO dipolar recoupling via low-power symmetry-based RF pulse schemes
MAS solid state NMR of proteins: simultaneous 15 Nâ?? 13 CA and 15 Nâ?? 13 CO dipolar recoupling via low-power symmetry-based RF pulse schemes
Abstract
The generation of efficient RN n νs,νk symmetry-based low-power RF pulse schemes for simultaneous 15Nâ??13CA and 15Nâ??13CO dipolar recoupling is demonstrated. The method involves mixing schemes employing phase and amplitude-modulated dual band-selective 180° pulses as basic â??Râ?? element and tailoring of the RF field-modulation...
nmrlearner
Journal club
0
02-25-2015 05:56 PM
[NMR paper] Designing Dipolar Recoupling and Decoupling Experiments for Biological Solid-State NMR Using Interleaved Continuous Wave and rf Pulse Irradiation.
Designing Dipolar Recoupling and Decoupling Experiments for Biological Solid-State NMR Using Interleaved Continuous Wave and rf Pulse Irradiation.
Designing Dipolar Recoupling and Decoupling Experiments for Biological Solid-State NMR Using Interleaved Continuous Wave and rf Pulse Irradiation.
Acc Chem Res. 2013 Apr 4;
Authors: Bjerring M, Jain S, Paaske B, Vinther JM, Nielsen NC
Abstract
Rapid developments in solid-state NMR methodologyhave boosted this technique into a highly versatile tool for structural biology. The invention of...
nmrlearner
Journal club
0
04-06-2013 11:18 AM
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data
May 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 218</br>
</br>
Recent structural studies of uniformly 15N, 13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical shifts, based on empirical correlations between chemical shifts and...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra
Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra
Abstract We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH...
nmrlearner
Journal club
0
11-29-2012 03:14 AM
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N-15N and carbonyl 13C-13C dipolar recoupling data
Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N-15N and carbonyl 13C-13C dipolar recoupling data
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Kan-Nian Hu, Wei Qiang, Guillermo A. Bermejo, Charles D. Schwieters, Robert Tycko</br>
Recent structural studies of uniformly 15N,13C-labeled proteins by solid state nuclear magnetic resonance (NMR) rely principally on two sources of structural restraints: (i) restraints on backbone conformation from isotropic 15N and 13C chemical...
nmrlearner
Journal club
0
03-10-2012 10:54 AM
Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes
Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes
Abstract An approach for conveniently implementing low-power CN n ν and RN n ν symmetry-based band-selective mixing sequences for generating homo- and heteronuclear chemical shift correlation NMR spectra of low γ nuclei in biological solids is demonstrated. Efficient magnetisation transfer characteristics are achieved by selecting appropriate symmetries requiring the application of basic RF elements of relatively long duration and numerically tailoring the RF field modulation profile...
Broadband 15Nâ??13C dipolar recoupling via symmetry-based RF pulse schemes at high MA
Abstract An approach for generating efficient
RNnnS, nk symmetry-based dual channel RF pulse schemes for γ-encoded broadband 15Nâ??13C dipolar recoupling at high magic angle spinning frequencies is presented. The method involves the numerical optimisation of the RF phase-modulation profile of the basic â??Râ?? element so as to obtain heteronuclear double quantum dipolar recoupling sequences with satisfactory magnetisation transfer characteristics. The basic â??Râ?? element was implemented as a sandwich of a small number of short pulses of equal duration with each pulse characterised by...