Actin polymerization dynamics regulated by actin-binding proteins are essential for various cellular functions. The cofilin family of proteins are potent regulators of actin severing and filament disassembly. The structural basis for cofilin-isoform-specific severing activity is poorly understood as their high-resolution structures in complex with filamentous actin (F-actin) are lacking. Here, we present the atomic-resolution structure of the muscle-tissue-specific isoform, cofilin-2 (CFL2),...
[NMR paper] Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy.
Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy.
Related Articles Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy.
Sci Rep. 2017 Mar 17;7:44506
Authors: Yehl J, Kudryashova E, Reisler E, Kudryashov D, Polenova T
Abstract
Cellular actin dynamics is an essential element of numerous cellular processes, such as cell motility, cell division and...
nmrlearner
Journal club
0
03-19-2017 10:38 PM
Studyingthe Conformation of a Silaffin-Derived PentalysinePeptide Embedded in Bioinspired Silica using Solution and DynamicNuclear Polarization Magic-Angle Spinning NMR
Studyingthe Conformation of a Silaffin-Derived PentalysinePeptide Embedded in Bioinspired Silica using Solution and DynamicNuclear Polarization Magic-Angle Spinning NMR
Yasmin Geiger, Hugo E. Gottlieb, U?mit Akbey, Hartmut Oschkinat and Gil Goobes
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.5b07809/20160419/images/medium/ja-2015-07809a_0001.gif
Journal of the American Chemical Society
DOI: 10.1021/jacs.5b07809
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/T8sbiifgCd8
[NMR paper] Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies.
Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies.
Magic Angle Spinning NMR Reveals Sequence-Dependent Structural Plasticity, Dynamics, and the Spacer Peptide 1 Conformation in HIV-1 Capsid Protein Assemblies.
J Am Chem Soc. 2013 Oct 28;
Authors: Han Y, Hou G, Suiter CL, Ahn J, Byeon IJ, Lipton AS, Burton SD, Hung I, Gor'kov PL, Gan Z, Brey WW, Rice D, Gronenborn AM, Polenova TE
Abstract
A key stage in HIV-1 maturation towards...
nmrlearner
Journal club
0
10-30-2013 10:44 AM
[NMR paper] Full-length Vpu and human CD4(372-433) in phospholipid bilayers as seen by magic angle spinning NMR.
Full-length Vpu and human CD4(372-433) in phospholipid bilayers as seen by magic angle spinning NMR.
Related Articles Full-length Vpu and human CD4(372-433) in phospholipid bilayers as seen by magic angle spinning NMR.
Biol Chem. 2013 Jul 17;
Authors: Do HQ, Wittlich M, Glück JM, Möckel L, Willbold D, Koenig BW, Heise H
Abstract
Abstract HIV-1 Vpu and CD4(372-433), a peptide comprising the transmembrane and cytoplasmic domain of human CD4, were recombinantly expressed in Escherichia coli, uniformly labeled with 13C und 15N isotopes,...