Related ArticlesMagic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine- and 13C-glycine-labeled opsin in a stable cell line.
Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):487-92
Authors: Eilers M, Reeves PJ, Ying W, Khorana HG, Smith SO
The apoprotein corresponding to the mammalian photoreceptor rhodopsin has been expressed by using suspension cultures of HEK293S cells in defined media that contained 6-15N-lysine and 2-13C-glycine. Typical yields were 1.5-1.8 mg/liter. Incorporation of 6-15N-lysine was quantitative, whereas that of 2-13C-glycine was about 60%. The rhodopsin pigment formed by binding of 11-cis retinal was spectrally indistinguishable from native bovine rhodopsin. Magic angle spinning (MAS) NMR spectra of labeled rhodopsin were obtained after its incorporation into liposomes. The 15N resonance corresponding to the protonated retinylidene Schiff base nitrogen was observed at 156.8 ppm in the MAS spectrum of 6-15N-lysine-labeled rhodopsin. This chemical shift corresponds to an effective Schiff base-counterion distance of greater than 4 A, consistent with structural water in the binding site hydrogen bonded with the Schiff base nitrogen and the Glu-113 counterion. The present study demonstrates that structural studies of rhodopsin and other G protein-coupled receptors by using MAS NMR are feasible.
[NMR paper] Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures wi
Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures with different uniform labeling.
Related Articles Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures with different uniform labeling.
J Am Chem Soc. 2004 Nov 17;126(45):14746-51
Authors: Etzkorn M, Böckmann A, Lange A, Baldus M
A general NMR strategy to directly study molecular interfaces under magic angle spinning is introduced. The approach is based on the spectroscopic analysis of uniformly, but heterogeneously, labeled...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100077x/aop/images/medium/bi-2010-00077x_0004.gif
Biochemistry
DOI: 10.1021/bi100077x
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/jvIszRWKX60
More...
nmrlearner
Journal club
0
10-14-2010 04:59 AM
[NMR paper] 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochrom
13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus.
Biochemistry. 1997 Jun 17;36(24):7288-96...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] 13C magic angle spinning NMR characterization of the functionally asymmetric QA bindi
13C magic angle spinning NMR characterization of the functionally asymmetric QA binding in Rhodobacter sphaeroides R26 photosynthetic reaction centers using site-specific 13C-labeled ubiquinone-10.
Related Articles 13C magic angle spinning NMR characterization of the functionally asymmetric QA binding in Rhodobacter sphaeroides R26 photosynthetic reaction centers using site-specific 13C-labeled ubiquinone-10.
Biochemistry. 1995 Aug 15;34(32):10229-36
Authors: van Liemt WB, Boender GJ, Gast P, Hoff AJ, Lugtenburg J, de Groot HJ
Photosynthetic...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] 13C magic angle spinning NMR evidence for a 15,15'-cis configuration of the spheroide
13C magic angle spinning NMR evidence for a 15,15'-cis configuration of the spheroidene in the Rhodobacter sphaeroides photosynthetic reaction center.
Related Articles 13C magic angle spinning NMR evidence for a 15,15'-cis configuration of the spheroidene in the Rhodobacter sphaeroides photosynthetic reaction center.
Biochemistry. 1992 Dec 15;31(49):12446-50
Authors: de Groot HJ, Gebhard R, van der Hoef I, Hoff AJ, Lugtenburg J, Violette CA, Frank HA
The photosynthetic reaction center of Rhodobacter sphaeroides 2.4.1 contains one carotenoid...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
[NMR paper] 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of r
13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Related Articles 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Biochemistry. 1991 Jul 30;30(30):7409-15
Authors: Smith SO, Courtin J, de Groot H, Gebhard R, Lugtenburg J
Magic-angle spinning NMR spectra have been obtained of the bathorhodopsin photointermediate trapped at low temperature (less than 130 K) by using isorhodopsin samples regenerated with retinal specifically 13C-labeled at positions 8,...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of r
13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Related Articles 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Biochemistry. 1991 Jul 30;30(30):7409-15
Authors: Smith SO, Courtin J, de Groot H, Gebhard R, Lugtenburg J
Magic-angle spinning NMR spectra have been obtained of the bathorhodopsin photointermediate trapped at low temperature (less than 130 K) by using isorhodopsin samples regenerated with retinal specifically 13C-labeled at positions 8,...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Biochemistry. 2010 Aug 9;
Authors: van der Wel PC, Lewandowski JR, Griffin RG
Various human diseases feature the formation of amyloid aggregates, but experimental characterization of these amyloid fibrils and their oligomeric precursors has remained challenging. Experimental...