Authors: Concistrč M, Johannessen OG, Carignani E, Geppi M, Levitt MH
Abstract
Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene cage. Molecular motions are often connected with fundamental chemical properties; therefore, an understanding of molecular dynamics can be important in fields ranging from material science to biochemistry. We present the case of ibuprofen sodium salt which exhibits different degrees of conformational freedom in different parts of the same molecule, leading to a range of line broadening and line narrowing phenomena as a function of temperature.
PMID: 23488538 [PubMed - as supplied by publisher]
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100077x/aop/images/medium/bi-2010-00077x_0004.gif
Biochemistry
DOI: 10.1021/bi100077x
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/jvIszRWKX60
More...
nmrlearner
Journal club
0
10-14-2010 04:59 AM
[NMR paper] 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochrom
13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus.
Biochemistry. 1997 Jun 17;36(24):7288-96...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochrom
13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus.
Biochemistry. 1997 Jun 17;36(24):7288-96...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] 13C magic angle spinning NMR characterization of the functionally asymmetric QA bindi
13C magic angle spinning NMR characterization of the functionally asymmetric QA binding in Rhodobacter sphaeroides R26 photosynthetic reaction centers using site-specific 13C-labeled ubiquinone-10.
Related Articles 13C magic angle spinning NMR characterization of the functionally asymmetric QA binding in Rhodobacter sphaeroides R26 photosynthetic reaction centers using site-specific 13C-labeled ubiquinone-10.
Biochemistry. 1995 Aug 15;34(32):10229-36
Authors: van Liemt WB, Boender GJ, Gast P, Hoff AJ, Lugtenburg J, de Groot HJ
Photosynthetic...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] 13C magic angle spinning NMR evidence for a 15,15'-cis configuration of the spheroide
13C magic angle spinning NMR evidence for a 15,15'-cis configuration of the spheroidene in the Rhodobacter sphaeroides photosynthetic reaction center.
Related Articles 13C magic angle spinning NMR evidence for a 15,15'-cis configuration of the spheroidene in the Rhodobacter sphaeroides photosynthetic reaction center.
Biochemistry. 1992 Dec 15;31(49):12446-50
Authors: de Groot HJ, Gebhard R, van der Hoef I, Hoff AJ, Lugtenburg J, Violette CA, Frank HA
The photosynthetic reaction center of Rhodobacter sphaeroides 2.4.1 contains one carotenoid...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
[NMR paper] 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of r
13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Related Articles 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Biochemistry. 1991 Jul 30;30(30):7409-15
Authors: Smith SO, Courtin J, de Groot H, Gebhard R, Lugtenburg J
Magic-angle spinning NMR spectra have been obtained of the bathorhodopsin photointermediate trapped at low temperature (less than 130 K) by using isorhodopsin samples regenerated with retinal specifically 13C-labeled at positions 8,...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of r
13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Related Articles 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Biochemistry. 1991 Jul 30;30(30):7409-15
Authors: Smith SO, Courtin J, de Groot H, Gebhard R, Lugtenburg J
Magic-angle spinning NMR spectra have been obtained of the bathorhodopsin photointermediate trapped at low temperature (less than 130 K) by using isorhodopsin samples regenerated with retinal specifically 13C-labeled at positions 8,...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR.
Biochemistry. 2010 Aug 9;
Authors: van der Wel PC, Lewandowski JR, Griffin RG
Various human diseases feature the formation of amyloid aggregates, but experimental characterization of these amyloid fibrils and their oligomeric precursors has remained challenging. Experimental...