BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-09-2013, 06:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,804
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Low resolution (1)H NMR assignment of proton populations in pound cake and its polymeric ingredients.

Low resolution (1)H NMR assignment of proton populations in pound cake and its polymeric ingredients.

Related Articles Low resolution (1)H NMR assignment of proton populations in pound cake and its polymeric ingredients.

Food Chem. 2013 Aug 15;139(1-4):120-8

Authors: Luyts A, Wilderjans E, Waterschoot J, Van Haesendonck I, Brijs K, Courtin CM, Hills B, Delcour JA

Abstract
Based on a model system approach, five different proton populations were distinguished in pound cake crumb using one dimensional low resolution (1)H NMR spectroscopy. In free induction decay (FID) measurements, proton populations were assigned to (i) non-exchanging CH protons of crystalline starch, proteins and crystalline fat and (ii) non-exchanging CH protons of amorphous starch and gluten, which are in little contact with water. In Carr-Purcell-Meiboom-Gill (CPMG) measurements, three proton populations were distinguished. The CPMG population with the lowest mobility and the FID population with the highest mobility represent the same proton population. The two CPMG proton populations with the highest mobility were assigned to exchanging protons (i.e., protons of water, starch, gluten, egg proteins and sugar) and protons of lipids (i.e., protons of egg yolk lipids and amorphous lipid fraction of margarine) respectively. Based on their spin-lattice relaxation times (T1), two dimensional (1)H NMR spectroscopy further resolved the two proton populations with the highest mobility into three and two proton populations, respectively.


PMID: 23561087 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Database proton NMR chemical shifts for RNA signal assignment and validation
Database proton NMR chemical shifts for RNA signal assignment and validation Abstract The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the 1H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watsonâ??Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 43...
nmrlearner Journal club 0 11-29-2012 03:14 AM
Multiple Fluorescence Labeling and Two Dimensional FTIR - 13C NMR Heterospectral Correlation Spectroscopy to Characterize Extracellular Polymeric Substances in Biofilms Produced during Composting.
Multiple Fluorescence Labeling and Two Dimensional FTIR - 13C NMR Heterospectral Correlation Spectroscopy to Characterize Extracellular Polymeric Substances in Biofilms Produced during Composting. Multiple Fluorescence Labeling and Two Dimensional FTIR - 13C NMR Heterospectral Correlation Spectroscopy to Characterize Extracellular Polymeric Substances in Biofilms Produced during Composting. Environ Sci Technol. 2011 Sep 13; Authors: Yu G, Tang Z, Yangchun X, Shen Q Abstract Knowledge on the structure and function of extracellular...
nmrlearner Journal club 0 09-14-2011 08:07 PM
Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra
Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra Abstract Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next....
nmrlearner Journal club 0 03-03-2011 02:06 AM
[NMR paper] Assignment of amide proton signals by combined evaluation of HN, NN and HNCA MAS-NMR
Assignment of amide proton signals by combined evaluation of HN, NN and HNCA MAS-NMR correlation spectra. Related Articles Assignment of amide proton signals by combined evaluation of HN, NN and HNCA MAS-NMR correlation spectra. J Biomol NMR. 2003 Mar;25(3):217-23 Authors: van Rossum BJ, Castellani F, Pauli J, Rehbein K, Hollander J, de Groot HJ, Oschkinat H In this paper, we present a strategy for the (1)H(N) resonance assignment in solid-state magic-angle spinning (MAS) NMR, using the alpha-spectrin SH3 domain as an example. A novel 3D...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Tools for the automated assignment of high-resolution three-dimensional protein NMR s
Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques. Tools for the automated assignment of high-resolution three-dimensional protein NMR spectra based on pattern recognition techniques. J Biomol NMR. 1997 Oct;10(3):207-19 Authors: Croft D, Kemmink J, Neidig KP, Oschkinat H One of the major bottlenecks in the determination of proteinstructures by NMR is in the evaluation of the data produced by theexperiments. An important step in this process is assignment, where...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] 13C and proton NMR studies of horse cytochrome c. Systematic assignment of methyl and
13C and proton NMR studies of horse cytochrome c. Systematic assignment of methyl and methine resonances in both oxidation states. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 13C and proton NMR studies of horse cytochrome c. Systematic assignment of methyl and methine resonances in both oxidation states. Eur J Biochem. 1992 Jun 15;206(3):721-8 Authors: Santos H, Turner DL The CHn groups in the aliphatic side chains of horse...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] High resolution 13C-solid state NMR of bacteriorhodopsin: assignment of specific aspa
High resolution 13C-solid state NMR of bacteriorhodopsin: assignment of specific aspartic acids and structural implications of single site mutations. Related Articles High resolution 13C-solid state NMR of bacteriorhodopsin: assignment of specific aspartic acids and structural implications of single site mutations. Eur Biophys J. 1990;18(1):17-24 Authors: Engelhard M, Hess B, Metz G, Kreutz W, Siebert F, Soppa J, Oesterhelt D Three mutant strains of Halobacterium sp. GRB with the site of mutation in the bacterioopsin gene (PM 326:...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:42 AM.


Map