[NMR paper] Longitudinal relaxation properties of (1)H(N) and (1)H(?) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs).
Longitudinal relaxation properties of (1)H(N) and (1)H(?) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs).
Longitudinal relaxation properties of (1)H(N) and (1)H(?) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs).
Abstract
Intrinsically disordered proteins (IDPs) are functional proteins containing large fragments characterized by high local mobility. Bioinformatic studies have suggested that a significant fraction (more than 30%) of eukaryotic proteins has disordered regions of more than 50 amino acids in length. Hence, NMR methods for the characterization of local compactness and solvent accessibility in such highly disordered proteins are of high importance. Among the available approaches, the HET-SOFAST/BEST experiments (Schanda et al., 2006, Rennella et al., 2014) provide semi-quantitative information by monitoring longitudinal (1)H relaxation of amide protons under different initial conditions. However, when approaching physiological sample conditions, the potential of these amide (1)H detected experiments is reduced due to rapid amide proton solvent exchange. (13)C direct detection methods therefore provide a valuable alternative thanks to a higher chemical shift dispersion and their intrinsic insensitivity toward solvent exchange. Here we present two sets of (13)C-detected experiments, which indirectly measure (1)H(N) and (1)H(?) inversion recovery profiles. The experiments consist of an initial spin inversion-recovery block optimized for selective manipulation of different types of proton spins followed by a CON read-out scheme. The proposed experiments were tested on human ?-synuclein and ubiquitin, two representative examples of unfolded and folded proteins.
PMID: 25771525 [PubMed - as supplied by publisher]
Longitudinal relaxation properties of 1HN and 1H? determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs)
Longitudinal relaxation properties of 1HN and 1H? determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs)
Publication date: Available online 12 February 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Tomáš Hošek , Sergi Gil-Caballero , Roberta Pierattelli , Bernhard Brutscher , Isabella C. Felli</br>
Intrinsically disordered proteins (IDPs) are functional proteins containing large fragments characterized by high local mobility. Bioinformatic studies have suggested that a significant fraction (more than 30%)...
nmrlearner
Journal club
0
02-12-2015 07:48 PM
[NMR paper] In-cell (13)C NMR spectroscopy for the study of intrinsically disordered proteins.
In-cell (13)C NMR spectroscopy for the study of intrinsically disordered proteins.
In-cell (13)C NMR spectroscopy for the study of intrinsically disordered proteins.
Nat Protoc. 2014 Sep;9(9):2005-2016
Authors: Felli IC, Gonnelli L, Pierattelli R
Abstract
A large number of proteins carry out their function in highly flexible and disordered states, lacking a well-defined 3D structure. These proteins, referred to as intrinsically disordered proteins (IDPs), are now in the spotlight of modern structural biology. Nuclear magnetic...
nmrlearner
Journal club
0
08-01-2014 06:21 PM
New 13C-detected experiments for the assignment of intrinsically disordered proteins
New 13C-detected experiments for the assignment of intrinsically disordered proteins
Abstract
NMR assignment of intrinsically disordered proteins (IDPs) by conventional HN-detected methods is hampered by the small dispersion of the amide protons chemical shifts and exchange broadening of amide proton signals. Therefore several alternative assignment strategies have been proposed in the last years. Attempting to seize that dispersion of 13Câ?² and 15N chemical shifts holds even in IDPs, we recently proposed two 13C-detected experiments to directly...
nmrlearner
Journal club
0
06-19-2014 10:21 PM
[NMR paper] Novel methods based on 13C detection to study intrinsically disordered proteins
Novel methods based on 13C detection to study intrinsically disordered proteins
Publication date: April 2014
Source:Journal of Magnetic Resonance, Volume 241</br>
Author(s): Isabella C. Felli , Roberta Pierattelli</br>
Intrinsically disordered proteins (IDPs) are characterized by highly flexible solvent exposed backbones and can sample many different conformations. These properties confer them functional advantages, complementary to those of folded proteins, which need to be characterized to expand our view of how protein structural and dynamic features affect...
nmrlearner
Journal club
0
03-22-2014 01:28 AM
[NMR paper] High-dimensionality (13)C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins.
High-dimensionality (13)C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins.
Related Articles High-dimensionality (13)C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins.
J Biomol NMR. 2013 Nov 8;
Authors: Bermel W, Felli IC, Gonnelli L, Ko?mi?ski W, Piai A, Pierattelli R, Zawadzka-Kazimierczuk A
Abstract
We present three novel exclusively heteronuclear 5D (13)C direct-detected NMR experiments, namely (H(N-flip)N)CONCACON, (HCA)CONCACON and...
nmrlearner
Journal club
0
11-11-2013 01:30 AM
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
J Biol Chem. 2011 Apr 20;
Authors: Iwasa H, Meshitsuka S, Hongo K, Mizobata T, Kawata Y
Co-chaperonin GroES from E. coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i. e., the...
nmrlearner
Journal club
0
04-22-2011 02:00 PM
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Abstract Extensive resonance overlap exacerbates assignment of intrinsically disordered proteins (IDPs). This issue can be circumvented by utilizing 15N, 13C� and 1HN spins, where the chemical shift dispersion is mainly dictated by the characteristics of consecutive amino acid residues. Especially 15N and 13C� spins offer superior chemical shift dispersion in comparison to 13Cα and 13Cβ spins. However, HN-detected experiments...
nmrlearner
Journal club
0
01-29-2011 05:31 AM
HA-detected experiments for the backbone assignment of intrinsically disordered prote
Abstract We propose a new alpha proton detection based approach for the sequential assignment of natively unfolded proteins. The proposed protocol superimposes on following features: HA-detection (1) enables assignment of natively unfolded proteins at any pH, i.e., it is not sensitive to rapid chemical exchange undergoing in natively unfolded proteins even at moderately high pH. (2) It allows straightforward assignment of proline-rich polypeptides without additional proline-customized experiments. (3) It offers more streamlined and less ambiguous assignment based on solely intraresidual...