Chemical Exchange Saturation Transfer (CEST) experiments are increasingly used to study slow timescale exchange processes in biomolecules. Although 15N- and 13C-CEST have been the approaches of choice, the development of spin state selective 1H-CEST pulse sequences that separate the effects of chemical and dipolar exchange [T. Yuwen, A. Sekhar and L. E. Kay, Angew Chem Int Ed Engl 2016 doi: 10.1002/anie.201610759 (Yuwen et al. 2017)] significantly increases the utility of 1H-based experiments. Pulse schemes have been described previously for studies of highly deuterated proteins. We present here longitudinal-relaxation optimized amide 1H-CEST experiments for probing chemical exchange in protonated proteins. Applications involving a pair of proteins are presented establishing that accurate 1H chemical shifts of sparsely populated conformers can be obtained from simple analyses of 1H-CEST profiles. A discussion of the inherent differences between 15N-/13C- and 1H-CEST experiments is presented, leading to an optimal strategy for recording 1H-CEST experiments.
Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST
Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST
Abstract
Transient excursions of native protein states to functionally relevant higher energy conformations often occur on the ÎĽsâ??ms timescale. NMR spectroscopy has emerged as an important tool to probe such processes using techniques such as Carrâ??Purcellâ??Meiboomâ??Gill (CPMG) relaxation dispersion and Chemical Exchange Saturation Transfer (CEST). The extraction of kinetic and...
nmrlearner
Journal club
0
07-30-2016 04:57 AM
[NMR paper] Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
Related Articles Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies.
J Magn Reson. 2015 Nov 9;261:149-156
Authors: Mote KR, Madhu PK
Abstract
(1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy...
nmrlearner
Journal club
0
11-19-2015 05:22 PM
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies
Publication date: Available online 9 November 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Kaustubh R. Mote, Perunthiruthy K. Madhu</br>
1 H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong 1 H- 1 H dipolar coupled network that...
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy
Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1? NMR Spectroscopy
Bo Zhao, Alexandar L. Hansen and Qi Zhang
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja409835y/aop/images/medium/ja-2013-09835y_0005.gif
Journal of the American Chemical Society
DOI: 10.1021/ja409835y
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/iu74AOgzY6s
nmrlearner
Journal club
0
12-19-2013 05:34 AM
[NMR paper] Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Angew Chem Int Ed Engl. 2013 Feb 28;
Authors: Vallurupalli P, Kay LE
Abstract
Seeing the invisible: A 13 CO NMR chemical exchange saturation transfer (CEST) experiment for the study of "invisible" excited protein states with lifetimes on the order of 5-50 ms has been developed. The 13 CO chemical...
nmrlearner
Journal club
0
03-02-2013 11:45 AM
13C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy
13C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy
Abstract Aromatic side chains are prevalent in protein binding sites, perform functional roles in enzymatic catalysis, and form an integral part of the hydrophobic core of proteins. Thus, it is of great interest to probe the conformational dynamics of aromatic side chains and its response to biologically relevant events. Indeed, measurements of 13C relaxation rates in aromatic moieties have a long history in biomolecular NMR, primarily in the context of...