BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-17-2013, 11:36 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,714
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Longitudinal Relaxation Enhancement in (1) H NMR Spectroscopy of Tissue Metabolites via Spectrally Selective Excitation.

Longitudinal Relaxation Enhancement in (1) H NMR Spectroscopy of Tissue Metabolites via Spectrally Selective Excitation.

Related Articles Longitudinal Relaxation Enhancement in (1) H NMR Spectroscopy of Tissue Metabolites via Spectrally Selective Excitation.

Chemistry. 2013 Sep 3;

Authors: Shemesh N, Dumez JN, Frydman L

Abstract
Nuclear magnetic resonance spectroscopy is governed by longitudinal (T1 ) relaxation. For protein and nucleic acid experiments in solutions, it is well established that apparent T1 values can be enhanced by selective excitation of targeted resonances. The present study explores such longitudinal relaxation enhancement (LRE) effects for molecules residing in biological tissues. The longitudinal relaxation recovery of tissue resonances positioned both down- and upfield of the water peak were measured by spectrally selective excitation/refocusing pulses, and compared with conventional water-suppressed, broadband-excited counterparts at 9.4 T. Marked LRE effects with up to threefold reductions in apparent T1 values were observed as expected for resonances in the 6-9 ppm region; remarkably, statistically significant LRE effects were also found for several non-exchanging metabolite resonances in the 1-4 ppm region, encompassing 30-50 % decreases in apparent T1 values. These LRE effects suggest a novel means of increasing the sensitivity of tissue-oriented experiments, and open new vistas to investigate the nature of interactions among metabolites, water and macromolecules at a molecular level.


PMID: 24038462 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[Question from NMRWiki Q&A forum] 1D NOESY with selective excitation and water suppression
1D NOESY with selective excitation and water suppression Hi, I am trying to collect 1D NOESY spectrum of a small protein in 90% H2O with selective excitation so I could follow a few NOEs without running a whole 2D experiment. Is there any sequence in Varian BioPack that I could use for that? I cannot achieve water suppression with the standard 'Noesy1D' sequence and all the other seem to not allow to selectively irradiate only one peak. Maybe it is just a matter of right parameters but I don't know how to set them properly - if so I will appreciate any advice. Thanks
nmrlearner News from other NMR forums 0 09-11-2013 09:15 PM
13C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy
13C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy Abstract Aromatic side chains are prevalent in protein binding sites, perform functional roles in enzymatic catalysis, and form an integral part of the hydrophobic core of proteins. Thus, it is of great interest to probe the conformational dynamics of aromatic side chains and its response to biologically relevant events. Indeed, measurements of 13C relaxation rates in aromatic moieties have a long history in biomolecular NMR, primarily in the context of...
nmrlearner Journal club 0 07-05-2012 04:13 AM
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy Abstract We developed a new method to elucidate the binding kinetics kon and koff, and the dissociation constant KD (=koff/kon), of protein-protein interactions without observable bound resonances of the protein of interest due to high molecular weight in a complex with a large target protein. In our method, kon and koff rates are calculated from the analysis of longitudinal relaxation rates of free resonances measured for multiple samples containing different...
nmrlearner Journal club 0 06-06-2011 12:53 AM
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy.
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy. Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy. J Biomol NMR. 2011 May 28; Authors: Sugase K We developed a new method to elucidate the binding kinetics k(on) and k(off), and the dissociation constant K(D) (=k(off)/k(on)), of protein-protein interactions without observable bound resonances of the protein of interest due to high molecular...
nmrlearner Journal club 0 06-01-2011 02:30 PM
[NMR paper] Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy.
Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. Related Articles Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc. 2002 Oct 30;124(43):12898-902 Authors: Pervushin K, Vögeli B, Eletsky A A general method to enhance the sensitivity of the multidimensional NMR experiments performed at high-polarizing magnetic field via the significant reduction of the longitudinal proton relaxation times is described. The method is based on the use of two vast pools of "thermal bath" 1H spins residing on...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Highly selective excitation in biomolecular NMR by frequency-switched single-transiti
Highly selective excitation in biomolecular NMR by frequency-switched single-transition cross-polarization. Related Articles Highly selective excitation in biomolecular NMR by frequency-switched single-transition cross-polarization. J Am Chem Soc. 2002 Mar 13;124(10):2076-7 Authors: Ferrage F, Eykyn TR, Bodenhausen G A new method for selective excitation in biomolecular NMR uses two-fold single-transition cross-polarization between protons and nitrogen-15 or carbon-13 nuclei. Switching the frequencies between the forward and backward transfer...
nmrlearner Journal club 0 11-24-2010 08:49 PM
A Selective NMR Method for Detecting Choline Containing Compounds in Liver Tissue: Th
A Selective NMR Method for Detecting Choline Containing Compounds in Liver Tissue: The 1H-14N HSQC Experiment Jiezhen Mao, Ling Jiang, Bin Jiang, Maili Liu and Xi-an Mao http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107745g/aop/images/medium/ja-2010-07745g_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja107745g http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/3IJa7rhbOjw
nmrlearner Journal club 0 11-20-2010 06:29 AM
[U. of Ottawa NMR Facility Blog] Gradient Spin Echoes for Selective Excitation
Gradient Spin Echoes for Selective Excitation Shaped excitation pulses can replace the non-selective hard pulses typically used in a one-pulse measurement to achieve selective excitation. Another method of achieving selective excitation is the gradient spin echo using a selective 180° pulse. This technique is demonstrated in the figure below. http://4.bp.blogspot.com/_5wBTR2kKTqA/S_UxeG5oXdI/AAAAAAAAAzc/BHWef-Tse7s/s400/grad_spin_echo.jpgA non-selective hard 90°x pulse is first given followed by a pair of identical pulsed field gradients sandwiching a soft selective 180° pulse about the y...
nmrlearner News from NMR blogs 0 08-21-2010 08:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:46 PM.


Map