BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-08-2013, 02:04 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Long-observation-window band-selective homonuclear decoupling: Increased sensitivity and resolution in solid-state NMR spectroscopy of proteins.

Long-observation-window band-selective homonuclear decoupling: Increased sensitivity and resolution in solid-state NMR spectroscopy of proteins.

Long-observation-window band-selective homonuclear decoupling: Increased sensitivity and resolution in solid-state NMR spectroscopy of proteins.

J Magn Reson. 2013 Sep 13;236C:89-94

Authors: Struppe JO, Yang C, Wang Y, Hernandez RV, Shamansky LM, Mueller LJ


Abstract
Sensitivity and resolution are the two fundamental obstacles to extending solid-state nuclear magnetic resonance to even larger protein systems. Here, a novel long-observation-window band-selective homonuclear decoupling (LOW BASHD) scheme is introduced that increases resolution up to a factor of 3 and sensitivity up to 1.8 by decoupling backbone alpha-carbon (C(?)) and carbonyl (C') nuclei in U-(13)C-labeled proteins during direct (13)C acquisition. This approach introduces short (
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Long-Observation-Window Band-Selective Homonuclear Decoupling: Increased Sensitivity and Resolution in Solid-State NMR Spectroscopy of Proteins
Long-Observation-Window Band-Selective Homonuclear Decoupling: Increased Sensitivity and Resolution in Solid-State NMR Spectroscopy of Proteins Publication date: Available online 13 September 2013 Source:Journal of Magnetic Resonance</br> Author(s): Jochem O. Struppe , Chen Yang , Yachong Wang , Roy V. Hernandez , Lisa M. Shamansky , Leonard J. Mueller</br> Sensitivity and resolution are the two fundamental obstacles to extending solid-state nuclear magnetic resonance to even larger protein systems. Here, a novel long-observation-window band-selective...
nmrlearner Journal club 0 09-13-2013 12:05 PM
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins
Sensitivity and Resolution Enhancement of Oriented Solid-State NMR: Application to Membrane Proteins Publication date: Available online 12 August 2013 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): T. Gopinath , Kaustubh R. Mote , Gianluigi Veglia</br> Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS) techniques, O-ssNMR spectroscopy requires membrane protein...
nmrlearner Journal club 0 08-13-2013 04:09 AM
[NMR paper] Refocused continuous-wave decoupling: a new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy.
Refocused continuous-wave decoupling: a new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--link.aip.org-jhtml-linkto.gif Related Articles Refocused continuous-wave decoupling: a new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy. J Chem Phys. 2012 Dec 7;137(21):214202 Authors: Vinther JM, Nielsen AB, Bjerring M, van Eck ER, Kentgens AP, Khaneja N, Nielsen NC Abstract A novel strategy for heteronuclear dipolar...
nmrlearner Journal club 0 06-01-2013 02:03 PM
[NMR paper] Efficient CO-CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization
Efficient CO-CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization Available online 14 March 2013 Publication year: 2013 Source:Journal of Magnetic Resonance</br> </br> Robust and efficient band-selective magnetization transfer between CO and CA spins can be achieved in highly deuterated solid proteins by dipolar-based homonuclear cross polarization. The approach is designed for moderate magic-angle spinning rates and high external magnetic fields where the isotropic chemical shift difference of CO and CA considerably exceeds the...
nmrlearner Journal club 0 03-16-2013 02:22 AM
High resolution methyl selective 13C-NMR of proteins in solution and solid state
High resolution methyl selective 13C-NMR of proteins in solution and solid state Abstract New 13C-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the 13C-methyl nucleus and its directly attached 13C spin in a molecule. In proteins such correlations edit the 13C-resonances of different methyl containing residues into distinct spectral regions...
nmrlearner Journal club 0 07-13-2012 10:46 PM
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR.
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR. Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR. J Magn Reson. 2010 Dec 31; Authors: Comellas G, Lopez JJ, Nieuwkoop AJ, Lemkau LR, Rienstra CM We describe a simple yet highly effective optimization strategy for SPINAL-64 (1)H decoupling conditions for magic-angle spinning solid-state NMR. With...
nmrlearner Journal club 0 02-08-2011 06:28 PM
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR Publication year: 2010 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 31 December 2010</br> Gemma, Comellas , Jakob J., Lopez , Andrew J., Nieuwkoop , Luisel R., Lemkau , Chad M., Rienstra</br> We describe a simple yet highly effective optimization strategy for SPINAL-64 1H decoupling conditions for magic-angle spinning solid-state NMR. With adjustment of the phase angles in a coupled manner,...
nmrlearner Journal club 0 01-01-2011 08:57 AM
High Resolution 1H Detected 1H,13C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective 1H,2H Isotopic Labeling of Methyl Groups
High Resolution <SUP>1</SUP>H Detected <SUP>1</SUP>H,<SUP>13</SUP>C Correlation Spectra in MAS Solid-State NMR using Deuterated Proteins with Selective <SUP>1</SUP>H,<SUP>2</SUP>H Isotopic Labeling of Methyl Groups Vipin Agarwal, Anne Diehl, Nikolai Skrynnikov, and Bernd Reif J. Am. Chem. Soc.; 2006; 128(39) pp 12620 - 12621; Abstract: MAS solid-state NMR experiments applied to biological solids are still hampered by low sensitivity and resolution. In this work, we employ a deuteration scheme in which individual methyl groups are selectively protonated. This labeling scheme...
administrator Solid-state high-res. NMR 1 08-05-2009 03:21 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:22 AM.


Map