BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-04-2018, 09:22 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Liquid-state NMR analysis of nanocelluloses.

Liquid-state NMR analysis of nanocelluloses.

Related Articles Liquid-state NMR analysis of nanocelluloses.

Biomacromolecules. 2018 Apr 03;:

Authors: King AWT, Mäkelä V, Kedzior SA, Laaksonen T, Partl GJ, Heikkinen S, Koskela H, Heikkinen HA, Holding AJ, Cranston ED, Kilpeläinen IA

Abstract
Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1H and 13C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, e.g. surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P4444][OAc]):DMSO-d6 electrolyte in the 1D and 2D NMR characterization of poly(methylmethacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA- g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P4444][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1H and HSQC was shown to be effective in the discrimination beween PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methylmethacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and hence molecular weight of the grafts, compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool) were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.


PMID: 29614220 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Investigating liquid-liquid phase separation of a monoclonal antibody using solution-state NMR spectroscopy: effect of Arg·Glu and Arg·HCl.
Investigating liquid-liquid phase separation of a monoclonal antibody using solution-state NMR spectroscopy: effect of Arg·Glu and Arg·HCl. Investigating liquid-liquid phase separation of a monoclonal antibody using solution-state NMR spectroscopy: effect of Arg·Glu and Arg·HCl. Mol Pharm. 2017 Jun 14;: Authors: Kheddo P, Bramham JE, Dearman RJ, Uddin S, van der Walle CF, Golovanov AP Abstract Liquid-liquid phase separation (LLPS) of monoclonal antibody (mAb) formulations involves spontaneous separation into dense...
nmrlearner Journal club 0 06-15-2017 03:37 PM
Liquid state 1H high field NMR in food analysis
Liquid state 1H high field NMR in food analysis October 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 66</br> </br> </br> </br></br>
nmrlearner Journal club 0 12-15-2012 09:51 AM
Non-linear liquid-state NMR
Non-linear liquid-state NMR Available online 8 November 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> </br> Graphical abstract
nmrlearner Journal club 0 12-01-2012 06:10 PM
Liquid state 1H high field NMR in food analysis
Liquid state 1H high field NMR in food analysis October 2012 Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 66</br> </br> </br> </br></br>
nmrlearner Journal club 0 12-01-2012 06:10 PM
Non-linear liquid-state NMR
Non-linear liquid-state NMR Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Hervé Desvaux</br> Graphical abstract http://origin-ars.els-cdn.com/content/image/1-s2.0-S0079656512001082-fx1.jpg Graphical abstract
nmrlearner Journal club 0 11-09-2012 10:29 AM
Liquid state 1H high field NMR in food analysis
Liquid state 1H high field NMR in food analysis Publication year: 2012 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Luisa Mannina, Anatoly P. Sobolev, Stéphane Viel</br> </br> </br></br>
nmrlearner Journal club 0 03-09-2012 09:16 AM
Liquid stateH High Field NMR in Food Analysis
Liquid stateH High Field NMR in Food Analysis Publication year: 2012 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, Available online 7 February 2012</br> Luisa*Mannina, Anatoly P.*Sobolev, Stéphane*Viel</br> More...
nmrlearner Journal club 0 02-10-2012 09:13 AM
Protein Analysis by (31)P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links.
Protein Analysis by (31)P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links. Protein Analysis by (31)P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links. J Agric Food Chem. 2011 Jan 10; Authors: Monogioudi E, Permi P, Filpponen I, Lienemann M, Li B, Argyropoulos D, Buchert J, Mattinen ML Cross-linking of ?-casein by Trichoderma reesei tyrosinase (TrTyr) and Streptoverticillium mobaraense transglutaminase (Tgase) was analyzed by (31)P nuclear magnetic...
nmrlearner Journal club 0 01-12-2011 11:11 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:45 AM.


Map