BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default On the ligand-protein and ligand-flavin interactions in NADPH-adrenodoxin reductase a

On the ligand-protein and ligand-flavin interactions in NADPH-adrenodoxin reductase as studied by 31P- and 13C-NMR. Use of 13C-enriched FAD as a probe.

Related Articles On the ligand-protein and ligand-flavin interactions in NADPH-adrenodoxin reductase as studied by 31P- and 13C-NMR. Use of 13C-enriched FAD as a probe.

J Biochem. 1991 Jan;109(1):144-9

Authors: Fujii S, Nonaka Y, Okamoto M, Miura R

The interaction between 2',5'-ADP and NADPH-adrenodoxin reductase from bovine adrenocortical mitochondria was examined by titrating the enzyme with 2',5'-ADP, while the 31P-signals of 2',5'-ADP were being monitored by 31P-NMR. From the titration profile, the dissociation constant for the complex of the enzyme with 2',5'-ADP was estimated to be 0.22 +/- 0.05 mM. Adrenodoxin reductase was reconstituted with 13C-enriched FADs. The 13C-enriched FADs used were [2-13C]-, [4,10 alpha-13C2]-, and [4 alpha-13C]FAD. The 13C-NMR spectra of these reconstituted enzyme preparations showed 13C-resonance peaks corresponding to the enriched carbon atoms at 160.6 , 165.1, 136.6, and 152.4 ppm (2-, 4-, 4 alpha-, and 10 alpha-13C atoms, respectively). When 2',5'-ADP was bound to the reconstituted enzyme, these 13C-resonance peaks did not shift appreciably from those of the unbound enzyme, whereas in the complex of the reconstituted enzyme with NADP+, the signals for 4- and 10 alpha-13C shifted to higher fields by 2.1 and 0.7 ppm, respectively and the 4 alpha-13C signal shifted to a lower field by 1.4 ppm. These results suggest that in the complex of the enzyme with NADP+ the pyridine moiety is located in the vicinity of C(4 alpha)-C(4) region and that the pi-electron density of the 4 alpha-position of flavin is decreased in the enzyme-NADP+ complex. This argues in favor of the electron transfer from the dihydropyridine moiety of NADPH to the electron-deficient N(5) = C(4 alpha) region of flavin.

PMID: 2016263 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Protein-ligand docking guided by ligand pharmacophore-mapping experiment by NMR.
Protein-ligand docking guided by ligand pharmacophore-mapping experiment by NMR. Protein-ligand docking guided by ligand pharmacophore-mapping experiment by NMR. J Mol Graph Model. 2011 Sep 3; Authors: Fukunishi Y, Mizukoshi Y, Takeuchi K, Shimada I, Takahashi H, Nakamura H Abstract We developed a new protein-ligand docking calculation method using experimental NMR data. Recently, we proposed a novel ligand epitope-mapping experiment, which utilizes the difference between the longitudinal relaxation rates of ligand protons with and...
nmrlearner Journal club 0 09-24-2011 04:11 PM
NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions.
NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand...
nmrlearner Journal club 0 07-13-2011 06:42 PM
[Question from NMRWiki Q&A forum] protein-ligand interactions 2D NMR
protein-ligand interactions 2D NMR I want to judge ligand protein interactions. Mine one is a dimer protein. Other than HSQC perturbation which other 2DNMR experiments useful to know the interaction? Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 05-18-2011 08:51 PM
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi200067t/aop/images/medium/bi-2011-00067t_0002.gif Biochemistry DOI: 10.1021/bi200067t http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/sLQe7ipMThM More...
nmrlearner Journal club 0 04-15-2011 01:40 AM
[NMR paper] NMR studies of protein-ligand interactions.
NMR studies of protein-ligand interactions. Related Articles NMR studies of protein-ligand interactions. Methods Mol Biol. 2005;305:197-214 Authors: Maurer T Interaction between biological macromolecules or of macromolecules with low-molecular-weight ligands is a central paradigm in the understanding of function in biological systems. It is also the major goal in pharmaceutical research to find and optimize ligands that modulate the function of biological macromolecules. Both technological advances and new methods in the field of nuclear...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Studies of protein-ligand interactions by NMR.
Studies of protein-ligand interactions by NMR. Related Articles Studies of protein-ligand interactions by NMR. Methods Mol Biol. 1997;60:195-232 Authors: Craik DJ, Wilce JA
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Studies of protein-ligand interactions by NMR.
Studies of protein-ligand interactions by NMR. Related Articles Studies of protein-ligand interactions by NMR. Methods Mol Biol. 1997;60:195-232 Authors: Craik DJ, Wilce JA
nmrlearner Journal club 0 08-22-2010 03:03 PM
A solution model of the complex formed by adrenodoxin and adrenodoxin reductase deter
A solution model of the complex formed by adrenodoxin and adrenodoxin reductase determined by paramagnetic NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles A solution model of the complex formed by adrenodoxin and adrenodoxin reductase determined by paramagnetic NMR spectroscopy. Biochemistry. 2010 Aug 17;49(32):6846-55 Authors: Keizers PH, Mersinli B, Reinle W, Donauer J, Hiruma Y, Hannemann F, Overhand M, Bernhardt R, Ubbink M Lanthanide tags offer the opportunity to...
nmrlearner Journal club 0 08-17-2010 03:36 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:38 PM.


Map