BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-19-2005, 09:04 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default

Selective Interface Detection: Mapping Binding Site Contacts in Membrane Proteins by NMR Spectroscopy
Suzanne R. Kiihne, Alain F. L. Creemers, Willem J. de Grip, Petra H. M. Bovee-Geurts, Johan Lugtenburg, and Huub J. M. de Groot
J. Am. Chem. Soc.; 2005; 127(16) pp 5734 - 5735

ABSTRACT:
Intermolecular contact surfaces are important regions where specific interactions mediate biological function. We introduce a new magic angle spinning solid state NMR technique, dubbed "selective interface detection spectroscopy" (SIDY). In this technique, 13C-attached protons (1Hlig) are dephased by 1H-13C REDOR. A spin diffusion period is then used to enhance long distance 1H-1H correlations, and the results are detected by a short period of cross polarization to the 13C isotope labels. This SIDY approach allows selective observation of the interface between 13C-labeled and unlabeled moieties. We have used SIDY to probe the ligand-protein binding surface between a uniformly isotopically labeled ligand cofactor, U-13C20-11-cis-retinal, and its binding site in rhodopsin (Rho), an unlabeled, membrane-embedded G-protein coupled receptor (GPCR). The observed 1HGPCR-13Clig correlations indicate multiple close contacts between the protein and the ionone ring of the ligand, in agreement with binding studies. The polyene tail of the ligand displays fewer strong correlations in the SIDY spectrum. Some correlations can be assigned to the protein side chains lining the ligand binding site, in agreement with the crystal structure.
Reply With Quote


1 out of 1 members found this post helpful. Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Biochim Biophys Acta. 2011 Aug;1808(8):2019-30 Authors: Romo TD, Bradney LA, Greathouse DV, Grossfield A Abstract One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The...
nmrlearner Journal club 0 08-19-2011 02:56 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA. Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA. J Am Chem Soc. 2011 Mar 1; Authors: Renault M, Bos MP, Tommassen J, Baldus M Multidomain proteins constitute a large part of prokaryotic and eukaryotic proteomes and play fundamental roles in various physiological processes. However, their structural characterization is challenging because of their large size and...
nmrlearner Journal club 0 03-03-2011 12:34 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA Marie Renault, Martine P. Bos, Jan Tommassen and Marc Baldus http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109469c/aop/images/medium/ja-2010-09469c_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja109469c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/9XN1qiW-S-I
nmrlearner Journal club 0 03-02-2011 02:01 AM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Chembiochem. 2005 Sep;6(9):1693-700 Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Characterization of protein-ligand interactions by high-resolution solid-state NMR sp
Characterization of protein-ligand interactions by high-resolution solid-state NMR spectroscopy. Related Articles Characterization of protein-ligand interactions by high-resolution solid-state NMR spectroscopy. J Am Chem Soc. 2004 Nov 3;126(43):13948-53 Authors: Zech SG, Olejniczak E, Hajduk P, Mack J, McDermott AE A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Membrane protein structure determination using solid-state NMR.
Membrane protein structure determination using solid-state NMR. Related Articles Membrane protein structure determination using solid-state NMR. Methods Mol Biol. 2004;278:403-73 Authors: Watts A, Straus SK, Grage SL, Kamihira M, Lam YH, Zhao X Solid-state NMR is emerging as a method for resolving structural information for large biomolecular complexes, such as membrane-embedded proteins. In principle, there is no molecular weight limit to the use of the approach, although the complexity and volume of data is still outside complete assignment...
nmrlearner Journal club 0 11-24-2010 09:25 PM
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes. Angew Chem Int Ed Engl. 2010 Jul 29; Authors: Zhu J, Ye E, Terskikh V, Wu G
nmrlearner Journal club 0 08-17-2010 03:36 AM
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes.
Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles Solid-State (17)O NMR Spectroscopy of Large Protein-Ligand Complexes. Angew Chem Int Ed Engl. 2010 Jul 28; Authors: Zhu J, Ye E, Terskikh V, Wu G
nmrlearner Journal club 0 08-17-2010 03:36 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:53 AM.


Map