BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:32 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ligand-induced structural changes to maltodextrin-binding protein as studied by solut

Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy.

Related Articles Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy.

J Mol Biol. 2001 Jun 15;309(4):961-74

Authors: Evenäs J, Tugarinov V, Skrynnikov NR, Goto NK, Muhandiram R, Kay LE

Solution NMR studies on the physiologically relevant ligand-free and maltotriose-bound states of maltodextrin-binding protein (MBP) are presented. Together with existing data on MBP in complex with beta-cyclodextrin (non-physiological, inactive ligand), these new results provide valuable information on changes in local structure, dynamics and global fold that occur upon ligand binding to this two-domain protein. By measuring a large number of different one-bond residual dipolar couplings, the domain conformations, critical for biological function, were investigated for all three states of MBP. Structural models of the solution conformation of MBP in a number of different forms were generated from the experimental dipolar coupling data and X-ray crystal structures using a quasi-rigid-body domain orientation algorithm implemented in the structure calculation program CNS. Excellent agreement between relative domain orientations in ligand-free and maltotriose-bound solution conformations and the corresponding crystal structures is observed. These results are in contrast to those obtained for the MBP/beta-cyclodextrin complex where the solution state is found to be approximately 10 degrees more closed than the crystalline state. The present study highlights the utility of residual dipolar couplings for orienting protein domains or macromolecules with respect to each other.

PMID: 11399072 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions.
NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand...
nmrlearner Journal club 0 07-13-2011 06:42 PM
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions
NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi200067t/aop/images/medium/bi-2011-00067t_0002.gif Biochemistry DOI: 10.1021/bi200067t http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/sLQe7ipMThM More...
nmrlearner Journal club 0 04-15-2011 01:40 AM
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins.
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins. Biochemistry. 2011 Jan 12; Authors: He Y, Estephan R, Yang X, Vela A, Wang H, Bernard C, Stark RE Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to...
nmrlearner Journal club 0 01-14-2011 12:05 PM
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. Mol Biol Rep. 2010 Dec 12; Authors: Paramanik V, Thakur MK Nuclear magnetic resonance (NMR) spectroscopy is a useful biophysical technique to study the ligand-protein interaction. In this report, we have used bacterially produced ER? and its domains for studying the functional analysis of ligand-protein interaction....
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] Structural mobility of the extracellular ligand-binding core of an ionotropic glutama
Structural mobility of the extracellular ligand-binding core of an ionotropic glutamate receptor. Analysis of NMR relaxation dynamics. Related Articles Structural mobility of the extracellular ligand-binding core of an ionotropic glutamate receptor. Analysis of NMR relaxation dynamics. Biochemistry. 2002 Aug 20;41(33):10472-81 Authors: McFeeters RL, Oswald RE Ionotropic glutamate receptors play important roles in a variety of neuronal processes and have been implicated in multiple neurodegenerative diseases. The extracellular ligand-binding...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] An NMR study of ligand binding by maltodextrin binding protein.
An NMR study of ligand binding by maltodextrin binding protein. Related Articles An NMR study of ligand binding by maltodextrin binding protein. Biochem Cell Biol. 1998;76(2-3):189-97 Authors: Gehring K, Zhang X, Hall J, Nikaido H, Wemmer DE Proton NMR spectra of maltodextrin binding protein from Escherichia coli were used to monitor conformational changes that accompany ligand binding. Chemical shift changes associated with the binding of different maltodextrins to maltodextrin binding protein were studied using one-dimensional difference...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278-90 Authors: Hodsdon ME, Cistola DP The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] An investigation of the ligand-binding site of the glutamine-binding protein of Esche
An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Related Articles An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Biochemistry. 1994 Jul 26;33(29):8651-61 Authors: Hing AW, Tjandra N, Cottam PF, Schaefer J, Ho C Glutamine-binding protein (GlnBP) is an essential component of the glutamine transport system in Escherichia coli. Rotational-echo double-resonance...
nmrlearner Journal club 0 08-22-2010 03:29 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:09 PM.


Map