Related ArticlesLigand-driven conformational changes of MurD visualized by paramagnetic NMR.
Sci Rep. 2015;5:16685
Authors: Saio T, Ogura K, Kumeta H, Kobashigawa Y, Shimizu K, Yokochi M, Kodama K, Yamaguchi H, Tsujishita H, Inagaki F
Abstract
Proteins, especially multi-domain proteins, often undergo drastic conformational changes upon binding to ligands or by post-translational modifications, which is a key step to regulate their function. However, the detailed mechanisms of such dynamic regulation of the functional processes are poorly understood because of the lack of an efficient tool. We here demonstrate detailed characterization of conformational changes of MurD, a 47 kDa protein enzyme consisting of three domains, by the use of solution NMR equipped with paramagnetic lanthanide probe. Quantitative analysis of pseudocontact shifts has identified a novel conformational state of MurD, named semi-closed conformation, which is found to be the key to understand how MurD regulates the binding of the ligands. The modulation of the affinity coupled with conformational changes accentuates the importance of conformational state to be evaluated in drug design.
PMID: 26582338 [PubMed - as supplied by publisher]
[NMR paper] Capturing Conformational States in Proteins Using Sparse Paramagnetic NMR Data.
Capturing Conformational States in Proteins Using Sparse Paramagnetic NMR Data.
Related Articles Capturing Conformational States in Proteins Using Sparse Paramagnetic NMR Data.
PLoS One. 2015;10(5):e0127053
Authors: Pilla KB, Leman JK, Otting G, Huber T
Abstract
Capturing conformational changes in proteins or protein-protein complexes is a challenge for both experimentalists and computational biologists. Solution nuclear magnetic resonance (NMR) is unique in that it permits structural studies of proteins under greatly varying...
nmrlearner
Journal club
0
05-21-2015 04:28 PM
[NMR paper] Artificial heme-proteins: determination of axial ligand orientations through paramagnetic NMR shifts.
Artificial heme-proteins: determination of axial ligand orientations through paramagnetic NMR shifts.
Related Articles Artificial heme-proteins: determination of axial ligand orientations through paramagnetic NMR shifts.
Chem Commun (Camb). 2014 Mar 3;
Authors: Vicari C, Saraiva IH, Maglio O, Nastri F, Pavone V, Louro RO, Lombardi A
Abstract
An empirical equation, describing the relationship between the porphyrin methyl hyperfine shifts and the position of the axial ligand(s), has been applied to an artificial heme-protein in order to...
nmrlearner
Journal club
0
03-04-2014 06:37 PM
Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy
Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy
Abstract Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising...
nmrlearner
Journal club
0
02-13-2012 02:34 AM
An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe.
An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe.
An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe.
J Biomol NMR. 2011 Sep 17;
Authors: Saio T, Ogura K, Shimizu K, Yokochi M, Burke TR, Inagaki F
Abstract
A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation...
nmrlearner
Journal club
0
09-20-2011 03:10 PM
An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe
An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe
Abstract A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligandâ??protein complex is determined. PRE is an...
nmrlearner
Journal club
0
09-20-2011 05:02 AM
Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains
Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains
Abstract Calmodulin is a two-domain protein which in solution can adopt a variety of conformations upon reorientation of its domains. The maximum occurrence (MO) of a set of calmodulin conformations that are representative of the overall conformational space possibly sampled by the protein, has been calculated from the paramagnetism-based restraints. These restraints were measured after inclusion of a lanthanide binding tag in the C-terminal domain to supplement the data obtained...
nmrlearner
Journal club
0
08-13-2011 02:47 AM
[NMR paper] Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR stu
Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin.
Related Articles Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin.
J Biol Inorg Chem. 2003 Jan;8(1-2):75-82
Authors: Fernández CO, Niizeki T, Kohzuma T, Vila AJ
Pseudoazurin is an electron transfer copper protein, a member of the cupredoxin family. The protein is frequently found in denitrifying bacteria, where it is the electron donor of nitrite reductase. The copper at...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts
Michael John, Guido Pintacuda, Ah Young Park, Nicholas E. Dixon, and Gottfried Otting
J. Am. Chem. Soc.; 2006; 128(39) pp 12910 - 12916; (Article)
Abstract:
Rational drug design depends on the knowledge of the three-dimensional (3D) structure of complexes between proteins and lead compounds of low molecular weight. A novel nuclear magnetic resonance (NMR) spectroscopy strategy based on the paramagnetic effects from lanthanide ions allows the rapid determination of the 3D structure of a small...