BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2014, 04:32 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,795
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ligand-Detected Relaxation Dispersion NMR Spectroscopy: Dynamics of preQ1 -RNA Binding.

Ligand-Detected Relaxation Dispersion NMR Spectroscopy: Dynamics of preQ1 -RNA Binding.

Related Articles Ligand-Detected Relaxation Dispersion NMR Spectroscopy: Dynamics of preQ1 -RNA Binding.

Angew Chem Int Ed Engl. 2014 Nov 17;

Authors: Moschen T, Wunderlich CH, Spitzer R, Levic J, Micura R, Tollinger M, Kreutz C

Abstract
An NMR-based approach to characterizing the binding kinetics of ligand molecules to biomolecules, like RNA or proteins, by ligand-detected Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments is described. A (15) N-modified preQ1 ligand is used to acquire relaxation dispersion experiments in the presence of low amounts of the Fsu class I preQ1 aptamer RNA, and increasing ligand concentrations to probe the RNA small molecule interaction. Our experimental data strongly support the conformational selection mechanism postulated. The approach gives direct access to two parameters of a ligand-receptor interaction: the off rate and the population of the small molecule-receptor complex. A detailed description of the kinetics underlying the ligand binding process is of crucial importance to fully understanding a riboswitch's function and to evaluate potential new antibiotics candidates targeting the noncoding RNA species. Ligand-detected NMR relaxation dispersion experiments represent a valuable diagnostic tool for the characterization of binding mechanisms.


PMID: 25403518 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 01-02-2013 01:48 PM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 11-22-2012 11:49 AM
Specific 12C?D212C?D2S13C?HD2 IsotopomerLabeling of Methionine ToCharacterize Protein Dynamics by 1H and 13CNMR Relaxation Dispersion
Specific 12C?D212C?D2S13C?HD2 IsotopomerLabeling of Methionine ToCharacterize Protein Dynamics by 1H and 13CNMR Relaxation Dispersion Ulrich Weininger, Zhihong Liu, Deane D. McIntyre, Hans J. Vogel and Mikael Akke http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja309294u/aop/images/medium/ja-2012-09294u_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja309294u http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/9TseQlKMjfM
nmrlearner Journal club 0 11-03-2012 12:26 AM
[NMR paper] Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes.
From Mendeley Biomolecular NMR group: Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain (1)H Probes. Journal of the American Chemical Society (2012). Volume: 134, Issue: 6. Pages: 3178-3189. Alexandar L Hansen, Patrik Lundström, Algirdas Velyvis, Lewis E Kay et al. A Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for quantifying millisecond time-scale chemical exchange at side-chain (1)H positions in proteins. Such experiments are not possible in a fully protonated molecule because of magnetization...
nmrlearner Journal club 0 10-12-2012 09:58 AM
Heteronuclear Adiabatic Relaxation Dispersion (HARD) for Quantitative Analysis of Conformational Dynamics in Proteins
Heteronuclear Adiabatic Relaxation Dispersion (HARD) for Quantitative Analysis of Conformational Dynamics in Proteins Publication year: 2012 Source:Journal of Magnetic Resonance</br> Nathaniel J. Traaseth, Fa-An Chao, Larry R. Masterson, Silvia Mangia, Michael Garwood, Shalom Michaeli, Burckhard Seelig, Gianluigi Veglia</br> NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R1? and Carr-Purcell-Meiboom-Gill (CPMG) R2 experiments are commonly used to characterize ?sec-msec dynamics, which...
nmrlearner Journal club 0 04-08-2012 08:53 AM
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes
Quantifying Millisecond Exchange Dynamics in Proteins by CPMG Relaxation Dispersion NMR Using Side-Chain 1H Probes Alexandar L. Hansen, Patrik Lundstrom, Algirdas Velyvis and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210711v/aop/images/medium/ja-2011-10711v_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja210711v http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/jaMjjnA_QTw
nmrlearner Journal club 0 02-03-2012 09:50 AM
Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis.
Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis. Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis. Proteins. 2011 Feb 16; Authors: Xu X, Ishima R, Ames JB Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, serves as a calcium sensor in retinal rod cells. Ca(2+) -induced conformational changes in recoverin promote extrusion of its...
nmrlearner Journal club 0 04-06-2011 10:54 AM
[NMR paper] Slow internal dynamics in proteins: application of NMR relaxation dispersion spectros
Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. Related Articles Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. J Am Chem Soc. 2002 Feb 20;124(7):1443-51 Authors: Mulder FA, Hon B, Mittermaier A, Dahlquist FW, Kay LE Recently developed carbon transverse relaxation dispersion experiments (Skrynnikov, N. R.; et al. J. Am. Chem. Soc. 2001, 123, 4556-4566) were...
nmrlearner Journal club 0 11-24-2010 08:49 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:06 PM.


Map