Related ArticlesLead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR.
J Biol Chem. 1994 Jan 14;269(2):834-7
Authors: Long GJ, Rosen JF, Schanne FA
Lead (Pb2+) has been reported to activate calcium/phospholipid-dependent protein kinase C (PKC) at subnanomolar concentrations (Markovac, J., and Goldstein, G. W. (1988) Nature 334, 732-734); however, others have failed to find any Pb(2+)-induced activation of PKC (Murakami, K., Feng, G., and Chen, S. G. (1993) J. Pharmacol. Exp. Ther. 264, 757-761). In neither of these studies was the actual free Pb2+ or Ca2+ concentration measured. In this study, 1,2-bis(2-amino-5-fluorophenoxy)ethane N,N,N',N'-tetraacetic acid (5F-BAPTA) was used to buffer Pb2+ and Ca2+ concentrations in the PKC reaction mixture. The specific free ion concentrations of Pb2+ and Ca2+, as well as Zn2+ and other divalent cations contained in the PKC reaction mixtures, were determined by 19F NMR spectroscopy. Using this approach to set and confirm the free Pb2+ and Ca2+ concentrations, we measured the Pb(2+)-dependent and the Ca(2+)-dependent activation of phosphotydylserine/diolein-dependent incorporation of 32P from ATP into histone and endogenous acid precipitable proteins in the 100,000 x g supernatant from homogenized rat brain cortex. We found that free Pb2+ activates PKC in the range from 10(-11) to 10(-8) M, Kact = 5.5 x 10(-11) M, while Ca2+ activates PKC in the range from 10(-8) to 10(-5) M, Kact = 2.56 x 10(-7) M. These findings clearly resolve the activation of PKC by subnanomolar concentrations of free Pb2+ from activation induced by Ca2+ or other divalent cations. Furthermore, it documents the utility of 5F-BAPTA as buffer and indicator when resolving the contributions of multiple divalent cations in biochemical processes.
Fast methionine-based solution structure determination of calcium-calmodulin complexes
Fast methionine-based solution structure determination of calcium-calmodulin complexes
Abstract Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca2+-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaMâ??s backbone conformation and a structural plasticity in CaMâ??s domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in...
nmrlearner
Journal club
0
03-03-2011 02:06 AM
[NMR paper] Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Related Articles Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Protein Sci. 2005 Sep;14(9):2421-8
Authors: Schnell JR, Zhou GP, Zweckstetter M, Rigby AC, Chou JJ
Coiled-coil motifs play essential roles in protein assembly and molecular recognition, and are therefore the targets of many ongoing...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurem
Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.
Eur J Biochem. 1995 Jun 15;230(3):1014-24
Authors: Tjandra N, Kuboniwa H, Ren H, Bax A
The backbone motions of calcium-free Xenopus calmodulin have been characterized by measurements of the 15N...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Lead activation of protein kinase C from rat brain. Determination of free calcium, le
Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR.
Related Articles Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR.
J Biol Chem. 1994 Jan 14;269(2):834-7
Authors: Long GJ, Rosen JF, Schanne FA
Lead (Pb2+) has been reported to activate calcium/phospholipid-dependent protein kinase C (PKC) at subnanomolar concentrations (Markovac, J., and Goldstein, G. W. (1988) Nature 334, 732-734); however, others have failed to find any...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Activation of the phosphosignaling protein CheY. I. Analysis of the phosphorylated co
Activation of the phosphosignaling protein CheY. I. Analysis of the phosphorylated conformation by 19F NMR and protein engineering.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc-MS.gif Related Articles Activation of the phosphosignaling protein CheY. I. Analysis of the phosphorylated conformation by 19F NMR and protein engineering.
J Biol Chem. 1993 Jun 25;268(18):13081-8
Authors: Drake SK, Bourret RB, Luck LA, Simon MI, Falke JJ
CheY, the 14-kDa response regulator protein of...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
[NMR paper] Determination of the solution structure of a synthetic two-site calcium-binding homod
Determination of the solution structure of a synthetic two-site calcium-binding homodimeric protein domain by NMR spectroscopy.
Related Articles Determination of the solution structure of a synthetic two-site calcium-binding homodimeric protein domain by NMR spectroscopy.
Biochemistry. 1992 Oct 13;31(40):9572-80
Authors: Shaw GS, Hodges RS, Sykes BD
The solution structure of a 34-residue synthetic calcium-binding peptide from site III of chicken troponin-C has been determined by 1H NMR spectroscopy. In solution and in the presence of calcium...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
[NMR paper] 19F-NMR study of the effect of lead on intracellular free calcium in human platelets.
19F-NMR study of the effect of lead on intracellular free calcium in human platelets.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 19F-NMR study of the effect of lead on intracellular free calcium in human platelets.
Biochim Biophys Acta. 1991 May 17;1092(3):341-6
Authors: Dowd TL, Gupta RK
Lead has been shown to affect calcium homeostasis. However, there is no prior evidence to indicate an effect of low concentrations of lead in the environment (approximately 1...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
[NMR paper] NMR detection of creatine kinase expressed in liver of transgenic mice: determination
NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels.
Proc Natl Acad Sci U S A. 1990 Apr;87(8):3112-6
Authors: Koretsky AP, Brosnan MJ, Chen LH, Chen JD, Van Dyke T
To use the equilibrium established by creatine kinase (CK) to determine hepatic free ADP...