BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-28-2018, 03:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,795
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Late metabolic precursors for selective aromatic residue labeling

Late metabolic precursors for selective aromatic residue labeling

Abstract

In recent years, we developed a toolbox of heavy isotope containing compounds, which serve as metabolic amino acid precursors in the E. coli-based overexpression of aromatic residue labeled proteins. Our labeling techniques show excellent results both in terms of selectivity and isotope incorporation levels. They are additionally distinguished by low sample production costs and meet the economic demands to further implement protein NMR spectroscopy as a routinely used method in drug development processes. Different isotopologues allow for the assembly of optimized protein samples, which fulfill the requirements of various NMR experiments to elucidate protein structures, analyze conformational dynamics, or probe interaction surfaces. In the present article, we want to summarize the precursors we developed so far and give examples of their special value in the probing of proteinā??ligand interaction.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Anthranilic acid, the new player in the ensemble of aromatic residue labeling precursor compounds
Anthranilic acid, the new player in the ensemble of aromatic residue labeling precursor compounds Abstract The application of metabolic precursors for selective stable isotope labeling of aromatic residues in cell-based protein overexpression has already resulted in numerous NMR probes to study the structural and dynamic characteristics of proteins. With anthranilic acid, we present the structurally simplest precursor for exclusive tryptophan side chain labeling. A synthetic route to 13C, 2H isotopologues allows the installation of isolated 13Cā??1H...
nmrlearner Journal club 0 08-31-2017 01:22 PM
Highly efficient residue -selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain
Highly efficient residue -selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain Abstract We recently developed a practical protocol for preparing proteins bearing stereo-selectively 13C-methyl labeled leucines and valines, instead of the commonly used 13C-methyl labeled precursors for these amino acids, by E. coli cellular expression. Using this protocol, proteins with any combinations of isotope-labeled or unlabeled Leu and Val residues were prepared, including some that could not be prepared by the...
nmrlearner Journal club 0 06-07-2016 02:39 PM
[NMR paper] NMR analysis of cross strand aromatic interactions in an 8 residue hairpin and a 14 residue three stranded ?-sheet peptide.
NMR analysis of cross strand aromatic interactions in an 8 residue hairpin and a 14 residue three stranded ?-sheet peptide. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles NMR analysis of cross strand aromatic interactions in an 8 residue hairpin and a 14 residue three stranded ?-sheet peptide. J Phys Chem B. 2012 Dec 13;116(49):14207-15 Authors: Sonti R, Rai R, Ragothama S, Balaram P Abstract Cross strand aromatic interactions between a facing pair of...
nmrlearner Journal club 0 06-13-2013 06:14 PM
[NMR paper] pH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR.
pH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR. Related Articles pH-Dependent Conformation, Dynamics, and Aromatic Interaction of*the*Gating Tryptophan Residue of the Influenza M2 Proton Channel from*Solid-State NMR. Biophys J. 2013 Apr 16;104(8):1698-708 Authors: Williams JK, Zhang Y, Schmidt-Rohr K, Hong M Abstract The M2 protein of the influenza virus conducts protons into the virion under external acidic pH. The proton selectivity of...
nmrlearner Journal club 0 04-23-2013 08:37 PM
Hyperpolarized (13) C-labelled anhydrides as DNP precursors of metabolic MRI agents
From the The DNP-NMR Blog: Hyperpolarized (13) C-labelled anhydrides as DNP precursors of metabolic MRI agents Colombo Serra, S., et al., Hyperpolarized 13C-labelled anhydrides as DNP precursors of metabolic MRI agents. Contrast Media & Molecular Imaging, 2012. 7(5): p. 469-477. http://www.ncbi.nlm.nih.gov/pubmed/22821881
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Alternative SAIL-Trp for robust aromatic signal assignment and determination of the Ļ?2 conformation by intra-residue NOEs
Alternative SAIL-Trp for robust aromatic signal assignment and determination of the Ļ?2 conformation by intra-residue NOEs Abstract Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing -proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using...
nmrlearner Journal club 0 09-27-2011 07:04 AM
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. J Magn Reson. 2011 Mar 17; Authors: Traaseth NJ, Veglia G We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR...
nmrlearner Journal club 0 04-13-2011 11:57 PM
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 March 2011</br> Nathaniel J., Traaseth , Gianluigi, Veglia</br> We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and...
nmrlearner Journal club 0 03-18-2011 06:43 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:08 AM.


Map