Abstract It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all detectable species. The analysis was carried out using experimental data obtained during aggregation of the 10.4 kDa Crh protein, which has been shown to involve a partially unfolded intermediate state prior to aggregation. Based on a single real-time 2D 13Câ??13C transition spectrum, kinetic information about the refolding and aggregation step could be extracted. In addition, structural rearrangements associated with refolding are estimated and several different aggregation scenarios were compared to the experimental data.
Content Type Journal Article
Pages 1-9
DOI 10.1007/s10858-011-9468-6
Authors
Manuel Etzkorn, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR
Transient Enzyme–Substrate Recognition Monitored by Real-Time NMR
Caroline Haupt, Rica Patzschke, Ulrich Weininger, Stefan Gro?ger, Michael Kovermann and Jochen Balbach
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2010048/aop/images/medium/ja-2011-010048_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2010048
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/nknzYbs0FNE
nmrlearner
Journal club
0
06-30-2011 05:01 AM
Transient enzyme-substrate recognition monitored by real-time NMR.
Transient enzyme-substrate recognition monitored by real-time NMR.
Transient enzyme-substrate recognition monitored by real-time NMR.
J Am Chem Soc. 2011 Jun 10;
Authors: Haupt C, Patzschke R, Weininger U, Gröger S, Kovermann M, Balbach J
Slow protein folding processes during which kinetic folding intermediates occur for an extended time can lead to aggregation and dysfunction in living cells. Therefore protein folding helpers have evolved, which prevent proteins from aggregation and/ or speed up folding processes. In this study we present the...
nmrlearner
Journal club
0
06-15-2011 01:15 PM
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy.
J Biomol NMR. 2011 Jan 21;
Authors: Etzkorn M, Böckmann A, Baldus M
It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all...
nmrlearner
Journal club
0
01-22-2011 01:52 PM
[NMR paper] Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic eve
Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds.
Related Articles Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds.
J Am Chem Soc. 2005 Jun 8;127(22):8014-5
Authors: Schanda P, Brutscher B
We demonstrate for different protein samples that 2D 1H-15N correlation NMR spectra can be recorded in a few seconds of acquisition time using a new band-selective optimized flip-angle...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Protein folding studied by real-time NMR spectroscopy.
Protein folding studied by real-time NMR spectroscopy.
Related Articles Protein folding studied by real-time NMR spectroscopy.
Methods. 2004 Sep;34(1):65-74
Authors: Zeeb M, Balbach J
Real-time NMR spectroscopy developed to a generally applicable method to follow protein folding reactions. It combines the access to high resolution data with kinetic experiments allowing very detailed insights into the development of the protein structure during different steps of folding. The present review concentrates mainly on the progress of real-time NMR...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Folding of a beta-sheet protein monitored by real-time NMR spectroscopy.
Folding of a beta-sheet protein monitored by real-time NMR spectroscopy.
Related Articles Folding of a beta-sheet protein monitored by real-time NMR spectroscopy.
J Mol Biol. 2003 May 16;328(5):1161-71
Authors: Mizuguchi M, Kroon GJ, Wright PE, Dyson HJ
At low ionic strength, apoplastocyanin forms an unfolded state under non-denaturing conditions. The refolding of this state is sufficiently slow to allow real-time NMR experiments to be performed. Folding of apoplastocyanin, initiated by the addition of salt and followed by real-time 2D 1H-15N...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Real-time NMR kinetic studies provide global and residue-specific information on the
Real-time NMR kinetic studies provide global and residue-specific information on the non-cooperative unfolding of the beta-trefoil protein, interleukin-1beta.
Related Articles Real-time NMR kinetic studies provide global and residue-specific information on the non-cooperative unfolding of the beta-trefoil protein, interleukin-1beta.
J Mol Biol. 2003 May 2;328(3):693-703
Authors: Roy M, Jennings PA
The interleukin-1beta (IL-1beta) structural motif is a beta-trefoil super fold created by six two-stranded beta-hairpins. Turns are thus...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Following protein folding in real time using NMR spectroscopy.
Following protein folding in real time using NMR spectroscopy.
Related Articles Following protein folding in real time using NMR spectroscopy.
Nat Struct Biol. 1995 Oct;2(10):865-70
Authors: Balbach J, Forge V, van Nuland NA, Winder SL, Hore PJ, Dobson CM
The refolding of apo bovine alpha-lactalbumin has been monitored in real time by NMR spectroscopy following rapid in situ dilution of a chemically denatured state. By examining individual resonances in the time-resolved NMR spectra, the native state has been shown to emerge in a cooperative...