BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Joint refinement as a tool for thorough comparison between NMR and X-ray data and str

Joint refinement as a tool for thorough comparison between NMR and X-ray data and structures of HU protein.

Related Articles Joint refinement as a tool for thorough comparison between NMR and X-ray data and structures of HU protein.

J Biomol NMR. 2001 Nov;21(3):235-48

Authors: Raves ML, Doreleijer JF, Vis H, Vorgias CE, Wilson KS, Kaptei R

Joint refinement, i.e., the simultaneous refinement of a structure against both nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic data, was performed on the HU protein from Bacillus stearothermophilus (HUBst). The procedure was aimed at investigating the compatibility of the two data sets and at identifying conflicting information. Wherever important differences were found, such as peptide flips in the main-chain conformation, the data were further analyzed to find the cause. The NMR data showed some errors arising either from the manual interpretation of the spectra or from the incorrect account for spin diffusion. The most important artefact inherent to the X-ray data is the crystal packing of the molecules: the effects range from the limitation of the freedom of the flexible parts of the HUBst molecule to possibly one of the peptide flips.

PMID: 11775740 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data Abstract X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular assemblies and membrane proteins often diffract weakly and such large systems encroach upon the molecular tumbling limit of solution NMR, new methods are essential to extend structures of such systems to high resolution. Here we present a method that incorporates solid-state NMR restraints alongside...
nmrlearner Journal club 0 09-26-2011 06:42 AM
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data.
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR. 2011 Sep 22; Authors: Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM Abstract X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular...
nmrlearner Journal club 0 09-23-2011 05:30 PM
[NMR paper] Joint X-ray and NMR refinement of the yeast L30e-mRNA complex.
Joint X-ray and NMR refinement of the yeast L30e-mRNA complex. Related Articles Joint X-ray and NMR refinement of the yeast L30e-mRNA complex. Structure. 2004 Jul;12(7):1165-76 Authors: Chao JA, Williamson JR L30e, a Saccharomyces cervisiae ribosomal protein, regulates its own expression by binding to a purine-rich asymmetric internal loop located in both its pre-mRNA and mature mRNA. A crystal structure of an MBP-L30e fusion protein in complex with an RNA containing the pre-mRNA regulatory site was solved at 3.24 A. Interestingly, the...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Structure refinement of the glucocorticoid receptor-DNA binding domain from NMR data
Structure refinement of the glucocorticoid receptor-DNA binding domain from NMR data by relaxation matrix calculations. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Structure refinement of the glucocorticoid receptor-DNA binding domain from NMR data by relaxation matrix calculations. J Mol Biol. 1995 Apr 7;247(4):689-700 Authors: van Tilborg MA, Bonvin AM, Hård K, Davis AL, Maler B, Boelens R, Yamamoto KR, Kaptein R The solution structure of the glucocorticoid...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] A systematic comparison of three structure determination methods from NMR data: depen
A systematic comparison of three structure determination methods from NMR data: dependence upon quality and quantity of data. Related Articles A systematic comparison of three structure determination methods from NMR data: dependence upon quality and quantity of data. J Biomol NMR. 1992 Jul;2(4):373-88 Authors: Liu Y, Zhao D, Altman R, Jardetzky O We have systematically examined how the quality of NMR protein structures depends on (1) the number of NOE distance constraints, (2) their assumed precision, (3) the method of structure calculation...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] Motional effects on NMR structural data. Comparison of spinach and Escherichia coli a
Motional effects on NMR structural data. Comparison of spinach and Escherichia coli acyl carrier proteins. Related Articles Motional effects on NMR structural data. Comparison of spinach and Escherichia coli acyl carrier proteins. Biochem Pharmacol. 1990 Jul 1;40(1):7-13 Authors: Kim Y, Ohlrogge JB, Prestegard JH Proteins in solution need not exist in a single rigid structure but can exist in a dynamic equilibrium among structural forms. The problems that this poses for structure determination using nuclear Overhauser effect data from...
nmrlearner Journal club 0 08-21-2010 10:48 PM
[NMR paper] Refinement of the NMR structures for acyl carrier protein with scalar coupling data.
Refinement of the NMR structures for acyl carrier protein with scalar coupling data. Related Articles Refinement of the NMR structures for acyl carrier protein with scalar coupling data. Proteins. 1990;8(4):377-85 Authors: Kim Y, Prestegard JH Structure determination of small proteins using NMR data is most commonly pursued by combining NOE derived distance constraints with inherent constraints based on chemical bonding. Ideally, one would make use of a variety of experimental observations, not just distance constraints. Here, coupling...
nmrlearner Journal club 0 08-21-2010 10:48 PM
[NMR paper] A branch and bound algorithm for protein structure refinement from sparse NMR data se
A branch and bound algorithm for protein structure refinement from sparse NMR data sets. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A branch and bound algorithm for protein structure refinement from sparse NMR data sets. J Mol Biol. 1999 Jan 29;285(4):1691-710 Authors: Standley DM, Eyrich VA, Felts AK, Friesner RA, McDermott AE We describe new methods for predicting protein tertiary structures to low resolution given the specification of secondary structure and a...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:00 AM.


Map