NMR relaxometry plays crucial role in studies of protein dynamics. The measurement of longitudinal and transverse relaxation rates of \(^{15}\) N is the main source of information on backbone motions. However, even the most basic approach exploiting a series of \(^{15}\) N HSQC spectra can require several hours of measurement time. Standard non-uniform sampling (NUS), i.e. random under-sampling of indirect time domain, typically cannot reduce this by more than 2â??4 \(\times\) due to relatively low â??compressibilityâ?? of these spectra. In this paper we propose an extension of NUS to relaxation delays. The two-dimensional space of \(t_1\) / \(t_{relax}\) is sampled in a way similar to NUS of \(t_1\) / \(t_2\) domain in 3D spectra. The signal is also processed in a way similar to that known from 3D NUS spectra i.e. using one of the most popular compressed sensing algorithms, iterative soft thresholding. The 2D Fourier transform matrix is replaced with mixedÂ*inverse Laplace-Fourier transform matrix. The peak positions in resulting 3D spectrum are characterized by two frequency coordinates and relaxation rate and thus no additional fitting of exponential curves is required. The method is tested on three globular proteins, providing satisfactory results in a time corresponding to acquisition of two conventional \(^{15}\) N HSQC spectra.
A non-uniform sampling approach enables studies of dilute and unstable proteins
A non-uniform sampling approach enables studies of dilute and unstable proteins
Abstract
NMR spectroscopy is a powerful method in structural and functional analysis of macromolecules and has become particularly prevalent in studies of protein structure, function and dynamics. Unique to NMR spectroscopy is the relatively low constraints on sample preparation and the high level of control of sample conditions. Proteins can be studied in a wide range of buffer conditions, e.g. different pHs and variable temperatures, allowing studies of proteins under...
nmrlearner
Journal club
0
02-11-2017 12:49 PM
[NMR paper] Non-uniform sampling of NMR relaxation data.
Non-uniform sampling of NMR relaxation data.
Related Articles Non-uniform sampling of NMR relaxation data.
J Biomol NMR. 2016 Feb 4;
Authors: Linnet TE, Teilum K
Abstract
The use of non-uniform sampling of NMR spectra may give significant reductions in the data acquisition time. For quantitative experiments such as the measurement of spin relaxation rates, non-uniform sampling is however not widely used as inaccuracies in peak intensities may lead to errors in the extracted dynamic parameters. By systematic reducing the coverage...
nmrlearner
Journal club
0
02-06-2016 03:10 PM
Non-uniform sampling of NMR relaxation data
Non-uniform sampling of NMR relaxation data
Abstract
The use of non-uniform sampling of NMR spectra may give significant reductions in the data acquisition time. For quantitative experiments such as the measurement of spin relaxation rates, non-uniform sampling is however not widely used as inaccuracies in peak intensities may lead to errors in the extracted dynamic parameters. By systematic reducing the coverage of the Nyquist grid of 15N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion datasets for four different proteins and performing a full...
nmrlearner
Journal club
0
02-05-2016 02:38 PM
[NMR paper] Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.
Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.
Related Articles Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.
Chemistry. 2015 Jul 28;
Authors: Didenko T, Proudfoot A, Dutta SK, Serrano P, Wüthrich K
Abstract
High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments...
nmrlearner
Journal club
0
08-02-2015 07:10 AM
[NMR paper] Time-resolved multidimensional NMR with non-uniform sampling.
Time-resolved multidimensional NMR with non-uniform sampling.
Time-resolved multidimensional NMR with non-uniform sampling.
J Biomol NMR. 2014 Jan 17;
Authors: Mayzel M, Rosenlöw J, Isaksson L, Orekhov VY
Abstract
Time-resolved experiments demand high resolution both in spectral dimensions and in time of the studied kinetic process. The latter requirement traditionally prohibits applications of the multidimensional experiments, which, although capable of providing invaluable information about structure and dynamics and almost unlimited...
nmrlearner
Journal club
0
01-18-2014 11:31 AM
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR
June 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 219</br>
</br>
Non-uniform weighted sampling (NUWS) is a sampling strategy, related to non-uniform sampling (NUS) in the limit of long acquisition times, in which each indirect increment of a multidimensional spectrum is sampled multiple times according to some weighting function. As the spectrum is fully sampled it can be processed in a conventional manner by the...
nmrlearner
Journal club
0
02-03-2013 10:13 AM
Uniform broadband excitation of crystallites in rotating solids using interleaved sequences of delays alternating with nutation
Uniform broadband excitation of crystallites in rotating solids using interleaved sequences of delays alternating with nutation
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Veronika Vitzthum, Marc A. Caporini, Simone Ulzega, Julien Trébosc, Olivier Lafon, Jean-Paul Amoureux, Geoffrey Bodenhausen</br>
In solids that are spinning about the magic angle, trains of short pulses in the manner of Delays Alternating with Nutations for Tailored Excitation (DANTE) allow one to improve the efficiency of the excitation of magnetization compared to...
nmrlearner
Journal club
0
06-13-2012 11:34 AM
[NMR paper] Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-
Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements.
Related Articles Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements.
J Biomol Struct Dyn. 1999 Aug;17(1):157-74
Authors: Orekhov VY, Korzhnev DM, Pervushin KV, Hoffmann E, Arseniev AS
This paper presents a procedure for detection of intermediate nanosecond internal dynamics in globular proteins. The procedure uses 1H-15N relaxation measurements at several spectrometer frequencies...