Related ArticlesIsoform-specific differences between the type Ialpha and IIalpha cyclic AMP-dependent protein kinase anchoring domains revealed by solution NMR.
J Biol Chem. 2000 Nov 10;275(45):35146-52
Authors: Banky P, Newlon MG, Roy M, Garrod S, Taylor SS, Jennings PA
Cyclic AMP dependent protein kinase (PKA) is controlled, in part, by the subcellular localization of the enzyme (). Discovery of dual specificity anchoring proteins (d-AKAPs) indicates that not only is the type II, but also the type I, enzyme localized (). It appears that the type I enzyme is localized in a novel, dynamic fashion as opposed to the apparent static localization of the type II enzyme. Recently, the structure of the dimerization/docking (D/D) domain from the type II enzyme was solved (). This work revealed an X-type four-helix bundle motif with a hydrophobic patch that modulates AKAP interactions. To understand the dynamic versus static localization of PKA, multidimensional NMR techniques were used to investigate the structural features of the type I D/D domain. Our results indicate a conserved helix-turn-helix motif in the type I and type II D/D domains. However, important differences between the two domains are evident in the extreme NH(2) terminus: this region is extended in the type II domain, whereas it is helical in the type I protein. The NH(2)-terminal residues in RIIalpha contain determinants for anchoring, and the orientation and packing of this helical element in the RIalpha structure may have profound consequences in the recognition surface presented to the AKAPs.
Expression, purification and NMR characterization of the cyclic recombinant form of the third intracellular loop of the vasopressin type 2 receptor.
Expression, purification and NMR characterization of the cyclic recombinant form of the third intracellular loop of the vasopressin type 2 receptor.
Expression, purification and NMR characterization of the cyclic recombinant form of the third intracellular loop of the vasopressin type 2 receptor.
Protein Expr Purif. 2011 May 13;
Authors: Bellot G, Pascal R, Mendre C, Urbach S, Mouillac B, Déméné H
The vasopressin type 2 (V2R) receptor belongs to the class of G-protein coupled receptors. It is mainly expressed in the membrane of kidney tubules,...
nmrlearner
Journal club
0
05-19-2011 04:20 AM
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
J Biomol NMR. 2010 Dec 18;
Authors: Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P
We present a computational method for finding optimal labeling patterns for the backbone...
nmrlearner
Journal club
0
12-21-2010 01:00 PM
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Abstract We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273â??6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i â?? 1) and 15NH(i) result only for pairs...
nmrlearner
Journal club
0
12-21-2010 02:14 AM
[NMR paper] Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Related Articles Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Protein Sci. 2005 Sep;14(9):2421-8
Authors: Schnell JR, Zhou GP, Zweckstetter M, Rigby AC, Chou JJ
Coiled-coil motifs play essential roles in protein assembly and molecular recognition, and are therefore the targets of many ongoing...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Probing the sweet determinants of brazzein: wild-type brazzein and a tasteless variant, brazzein-ins(R18a-I18b), exhibit different pH-dependent NMR chemical shifts.
Probing the sweet determinants of brazzein: wild-type brazzein and a tasteless variant, brazzein-ins(R18a-I18b), exhibit different pH-dependent NMR chemical shifts.
Related Articles Probing the sweet determinants of brazzein: wild-type brazzein and a tasteless variant, brazzein-ins(R18a-I18b), exhibit different pH-dependent NMR chemical shifts.
Biochem Biophys Res Commun. 2005 Sep 16;335(1):256-63
Authors: Zhao Q, Song J, Jin Z, Danilova V, Hellekant G, Markley JL
Brazzein is a small, intensely sweet protein. As a probe of the functional...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (3
Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy.
Related Articles Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy.
Biochemistry. 2002 May 14;41(19):5968-77
Authors: Seifert MH, Breitenlechner CB, Bossemeyer D, Huber R, Holak TA, Engh RA
Cell signaling pathways rely on phosphotransfer reactions that are catalyzed by protein kinases. The protein kinases themselves are typically regulated by phosphorylation and concurrent structural...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conf
1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c.
Eur J Biochem. 1993 Feb 1;211(3):555-62
Authors: Turner DL, Williams RJ
The redox-state dependent changes in chemical shift, which have...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
[NMR paper] Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled ba
Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: potential for NMR structure determination of large proteins.
Related Articles Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: potential for NMR structure determination of large proteins.
J Biomol NMR. 1999 May;14(1):79-83
Authors: Kelly MJ, Krieger C, Ball LJ, Yu Y, Richter G, Schmieder P, Bacher A, Oschkinat H
NMR investigations of larger macromolecules (> 20...