Related ArticlesIrreversible conformational change of bacterio-opsin induced by binding of retinal during its reconstitution to bacteriorhodopsin, as studied by (13)C NMR.
J Biochem. 2000 May;127(5):861-9
Authors: Yamaguchi S, Tuzi S, Tanio M, Naito A, Lanyi JK, Needleman R, Saitô H
We compared (13)C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled bacterio-opsin (bO), produced either by bleaching bR with hydroxylamine or from a retinal-deficient strain, with those of bacteriorhodopsin (bR), in order to gain insight into the conformational changes of the protein backbone that lead to correct folding after retinal is added to bO. The observed (13)C NMR spectrum of bO produced by bleaching is not greatly different from that of bR, except for the presence of suppressed or decreased peak-intensities. From careful evaluation of the intensity differences between cross polarization magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) spectra, it appears that the reduced peak-intensities arise from reduced efficiency of cross polarization or interference of internal motions with proton decoupling frequencies. In particular, the E-F and F-G loops and some transmembrane helices of the bleached bO have acquired internal motions whose frequencies interfere with proton decoupling frequencies. In contrast, the protein backbone of the bO from the retinal-negative cells is incompletely folded. Although it contains mainly a-helices, its very broad (13)C NMR signals indicate that its tertiary structure is different from bR. Importantly, this changed structure is identical in form to that of bleached bO from wild-type bR after it was regenerated with retinal in vitro, and bleached with hydroxylamine. We conclude that the binding of retinal is essential for the correct folding of bR after it is inserted in vitro into the lipid bilayer, and the final folded state does not revert to the partially folded form upon removal of the retinal.
[Question from NMRWiki Q&A forum] Distinguish between protonation and conformational change?
Distinguish between protonation and conformational change?
Hi all,
In a folded protein with 13C-delta labeled glutamates, how can one distinguish between chemical shift due to protonation and chemical shift due to conformational changes?
Thanks.
nmrlearner
News from other NMR forums
0
02-24-2011 11:30 PM
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
Mol Biol Rep. 2010 Dec 12;
Authors: Paramanik V, Thakur MK
Nuclear magnetic resonance (NMR) spectroscopy is a useful biophysical technique to study the ligand-protein interaction. In this report, we have used bacterially produced ER? and its domains for studying the functional analysis of ligand-protein interaction....
nmrlearner
Journal club
0
12-15-2010 12:03 PM
[NMR paper] Detection of a conformational change in maltose binding protein by (129)Xe NMR spectr
Detection of a conformational change in maltose binding protein by (129)Xe NMR spectroscopy.
Related Articles Detection of a conformational change in maltose binding protein by (129)Xe NMR spectroscopy.
J Am Chem Soc. 2001 Sep 5;123(35):8616-7
Authors: Rubin SM, Spence MM, Dimitrov IE, Ruiz EJ, Pines A, Wemmer DE
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] NMR structure of free RGS4 reveals an induced conformational change upon binding Galp
NMR structure of free RGS4 reveals an induced conformational change upon binding Galpha.
Related Articles NMR structure of free RGS4 reveals an induced conformational change upon binding Galpha.
Biochemistry. 2000 Jun 20;39(24):7063-73
Authors: Moy FJ, Chanda PK, Cockett MI, Edris W, Jones PG, Mason K, Semus S, Powers R
Heterotrimeric guanine nucleotide-binding proteins (G-proteins) are transducers in many cellular transmembrane signaling systems where regulators of G-protein signaling (RGS) act as attenuators of the G-protein signal cascade...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
NMR evidence of GM1-induced conformational change of substance P using isotropic bice
NMR evidence of GM1-induced conformational change of substance P using isotropic bicelles.
Related Articles NMR evidence of GM1-induced conformational change of substance P using isotropic bicelles.
Biochim Biophys Acta. 2010 Oct 8;
Authors: Gayen A, Goswami SK, Mukhopadhyay C
Substance P (SP) is one of the target neurotransmitters associated with diseases related to chronic inflammation, pain and depression. The selective receptor for SP, NK(1)R is located in the heterogeneous microdomains or caveolaes in membrane. Gangliosides, specifically...
nmrlearner
Journal club
0
10-13-2010 02:18 PM
[NMR paper] Mapping the nucleotide-dependent conformational change of human N-ras p21 in solution
Mapping the nucleotide-dependent conformational change of human N-ras p21 in solution by heteronuclear-edited proton-observed NMR methods.
Related Articles Mapping the nucleotide-dependent conformational change of human N-ras p21 in solution by heteronuclear-edited proton-observed NMR methods.
Biochemistry. 1993 Jul 6;32(26):6763-72
Authors: Hu JS, Redfield AG
Heteronuclear-edited proton-detected NMR methods are used to study the nucleotide-dependent conformational change between GDP- and GTP gamma S-bound forms of human N-ras p21. Amide...