Ionization Behavior of Polyphosphoinositides Determined via the Preparation of pH Titration Curves Using Solid-State (31)P NMR.
Methods Mol Biol. 2013;1009:129-42
Authors: Graber ZT, Kooijman EE
Abstract
Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.
Preparation of RNA samples with narrow line widths for solid state NMR investigations
Preparation of RNA samples with narrow line widths for solid state NMR investigations
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Wei Huang, Michael F. Bardaro, Gabriele Varani, Gary P. Drobny</br>
Solid state NMR can provide detailed structural and dynamic information on biological systems that cannot be studied under solution conditions, and can investigate motions which occur with rates that cannot be fully studied by solution NMR. This approach has successfully been used to study proteins, but the application of multidimensional solid state...
nmrlearner
Journal club
0
08-10-2012 08:40 PM
A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR
A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR
Abstract Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-13C2-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (~120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the...
nmrlearner
Journal club
0
05-29-2012 01:00 AM
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Biochim Biophys Acta. 2010 Dec 28;
Authors: Penk A, Müller M, Scheidt HA, Langosch D, Huster D
The fusion of biological membranes is mediated by integral membrane proteins with ?-helical transmembrane segments. Additionally, those proteins are often modified by the covalent...
nmrlearner
Journal club
0
01-05-2011 09:51 PM
[NMR paper] Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spec
Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
Related Articles Structure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
J Mol Biol. 2004 Aug 13;341(3):869-79
Authors: Thiriot DS, Nevzorov AA, Zagyanskiy L, Wu CH, Opella SJ
The atomic resolution structure of Pf1 coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles in solution is compared to the structures previously determined by X-ray fiber and...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] Preparation of protein nanocrystals and their characterization by solid state NMR.
Preparation of protein nanocrystals and their characterization by solid state NMR.
Related Articles Preparation of protein nanocrystals and their characterization by solid state NMR.
J Magn Reson. 2003 Nov;165(1):162-74
Authors: Martin RW, Zilm KW
Preparation of proteins in their crystalline state has been found to be important in producing stable therapeutic protein formulations, cross-linked enzyme crystals for application in industrial processes, generating novel porous media for separations, and of course in structure elucidation. Of these...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscop
Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Related Articles Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy.
Nature. 2002 Nov 7;420(6911):98-102
Authors: Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H
The determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
A Solid-State (17)O NMR Study of l-Tyrosine in Different Ionization States: Implicati
A Solid-State (17)O NMR Study of l-Tyrosine in Different Ionization States: Implications for Probing Tyrosine Side Chains in Proteins.
Related Articles A Solid-State (17)O NMR Study of l-Tyrosine in Different Ionization States: Implications for Probing Tyrosine Side Chains in Proteins.
J Phys Chem B. 2010 Aug 16;
Authors: Zhu J, Lau JY, Wu G
We report experimental characterization of (17)O quadrupole coupling (QC) and chemical shift (CS) tensors for the phenolic oxygen in three l-tyrosine (l-Tyr) compounds: l-Tyr, l-Tyr.HCl, and Na(2)(l-Tyr)....