BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,779
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Involvement of various amino- and carboxyl-terminal residues in the active site of th

Involvement of various amino- and carboxyl-terminal residues in the active site of the histidine-containing protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus: site-directed mutagenesis with the ptsH gene, biochemical characterization and NMR studies of the mutant proteins.

Related Articles Involvement of various amino- and carboxyl-terminal residues in the active site of the histidine-containing protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus: site-directed mutagenesis with the ptsH gene, biochemical characterization and NMR studies of the mutant proteins.

Protein Eng. 1993 Jun;6(4):417-23

Authors: Kruse R, Hengstenberg W, Beneicke W, Kalbitzer HR

The phosphocarrier HPr (heat stable protein) of Staphylococcus carnosus was modified by site-directed mutagenesis of the corresponding ptsH gene in order to analyse the importance of amino acids which were supposed to be part of the active centre of the protein. Three residues which are conserved in all HPrs, Arg17, Pro18 and Glu84, were mutated: Arg17 was changed to His (17RH) and Pro18 and Glu84 were changed into Ala (18PA and 84EA). In addition, Leu86 was changed into Ala (86LA) and one mutant protein was missing the last six residues of the HPr (delta 83). The wild type gene and all mutant genes were overexpressed and the gene products purified to homogeneity. Three-dimensional structures of wild type and mutant proteins were monitored by NMR spectroscopy. All five mutant HPrs had native conformations. The ATP-dependent HPr kinase can phosphorylate all HPr derivatives at Ser46. The PTS activity of the amino-terminal HPr mutant proteins 17RH and 18PA was different compared to wild type HPr. In contrast, the carboxy-terminal mutant HPrs possessed a similar enzyme activity to the wild type HPr. The 17RH and 18PA HPrs with substitution near the active centre His15 showed a very slow phosphorylation by enzyme I but the further transfer of the phosphoryl group to enzyme III was also strongly inhibited. The enzyme activity of the HPr 17RH was significantly improved at low pH. NMR pH-titration experiments showed that Arg17 is not responsible for the low pKa of the active centre His15 but this positively charged residue is essential in this position for the HPr activity.

PMID: 8332599 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Influence of Substrate Modification and C-Terminal Truncation on the Active Site Structure of Substrate-Bound Heme Oxygenase from Neisseriae meningitidis. A 1H NMR Study
Influence of Substrate Modification and C-Terminal Truncation on the Active Site Structure of Substrate-Bound Heme Oxygenase from Neisseriae meningitidis. A 1H NMR Study http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi200978g/aop/images/medium/bi-2011-00978g_0009.gif Biochemistry DOI: 10.1021/bi200978g http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/BYT7Ijd6pDI More...
nmrlearner Journal club 0 09-22-2011 05:37 AM
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study. Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study. Biochemistry. 2011 Aug 27; Authors: Peng D, Satterlee JD, Ma LH, Dallas JL, Smith KM, Zhang X, Sato M, La Mar GN Abstract Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which...
nmrlearner Journal club 0 08-30-2011 04:52 PM
Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues
Analysis of the amide 15N chemical shift tensor of the Cα tetrasubstituted constituent of membrane-active peptaibols, the α-aminoisobutyric acid residue, compared to those of di- and tri-substituted proteinogenic amino acid residues <div class="Abstract">Abstract In protein NMR spectroscopy the chemical shift provides important information for the assignment of residues and a first structural evaluation of dihedral angles. Furthermore, angular restraints are obtained from oriented samples by solution and solid-state NMR spectroscopic approaches. Whereas the anisotropy of chemical...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Site-specific labeling of proteins with NMR-active unnatural amino acids
Site-specific labeling of proteins with NMR-active unnatural amino acids Abstract A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic
The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Related Articles The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Biochemistry. 2004 Apr 13;43(14):4082-91 Authors: Azurmendi HF, Wang SC, Massiah MA, Poelarends GJ, Whitman CP, Mildvan AS trans-3-Chloroacrylic acid dehalogenase (CaaD) converts trans-3-chloroacrylic acid to malonate semialdehyde by the...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Measurement of side-chain carboxyl pK(a) values of glutamate and aspartate residues i
Measurement of side-chain carboxyl pK(a) values of glutamate and aspartate residues in an unfolded protein by multinuclear NMR spectroscopy. Related Articles Measurement of side-chain carboxyl pK(a) values of glutamate and aspartate residues in an unfolded protein by multinuclear NMR spectroscopy. J Am Chem Soc. 2002 May 22;124(20):5714-7 Authors: Tollinger M, Forman-Kay JD, Kay LE A triple-resonance NMR pulse scheme is presented for measuring aspartic and glutamic acid side-chain pK(a) values in unfolded protein states where chemical shift...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and ir
Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and iron(III)-superoxide dismutase from Escherichia coli. Related Articles Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and iron(III)-superoxide dismutase from Escherichia coli. J Biomol NMR. 2000 Aug;17(4):311-22 Authors: Sorkin DL, Miller AF We have developed and employed multiple amino acid-specific isotopic labeling schemes to obtain definitive assignments for active site 1H NMR resonances of iron(II)- and iron(III)-superoxide...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues
Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide. Related Articles Modulation of intrinsic phi,psi propensities of amino acids by neighbouring residues in the coil regions of protein structures: NMR analysis and dissection of a beta-hairpin peptide. J Mol Biol. 1998 Dec 18;284(5):1597-609 Authors: Griffiths-Jones SR, Sharman GJ, Maynard AJ, Searle MS Analysis of residues in coil regions of protein structures...
nmrlearner Journal club 0 11-17-2010 11:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:33 PM.


Map