The Involvement of Amino Acid Side Chains in Shielding the Nickel Coordination Site: An NMR Study.
Molecules. 2013;18(10):12396-12414
Authors: Medici S, Peana M, Nurchi VM, Zoroddu MA
Abstract
Coordination of proteins and peptides to metal ions is known to affect their properties, often by a change in their structural organization. Side chains of the residues directly involved in metal binding or very close to the coordination centre may arrange themselves around it, in such a way that they can, for instance, disrupt the protein functions or stabilize a metal complex by shielding it from the attack of water or other small molecules. The conformation of these side chains may be crucial to different biological or toxic processes. In our research we have encountered such behaviour in several cases, leading to interesting results for our purposes. Here we give an overview on the structural changes involving peptide side chains induced by Ni(II) coordination. In this paper we deal with a number of peptides, deriving from proteins containing one or more metal coordinating sites, which have been studied through a series of NMR experiments in their structural changes caused by Ni(II) complexation. Several peptides have been included in the study: short sequences from serum albumin (HSA), Des-Angiotensinogen, the 30-amino acid tail of histone H4, some fragments from histone H2A and H2B, the initial fragment of human protamine HP2 and selected fragments from prion and Cap43 proteins. NMR was the election technique for gathering structural information. Experiments performed for this purpose included 1D 1H and 13C, and 2D HSQC, COSY, TOCSY, NOESY and ROESY acquisitions, which allowed the calculation of the Ni(II) complexes structural models.
PMID: 24108401 [PubMed - as supplied by publisher]
[NMR paper] Solid-state NMR study reveals Collagen I structural modifications of amino-acid side chains upon fibrillogenesis.
Solid-state NMR study reveals Collagen I structural modifications of amino-acid side chains upon fibrillogenesis.
Related Articles Solid-state NMR study reveals Collagen I structural modifications of amino-acid side chains upon fibrillogenesis.
J Biol Chem. 2013 Jan 22;
Authors: De Sa Peixoto P, Laurent G, Azais T, Mosser G
Abstract
In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar and denatured states...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins
4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins
Abstract A four-dimensional (4D) APSY (automated projection spectroscopy)-HBCB(CG)CDHD experiment is presented. This 4D experiment correlates aromatic with aliphatic carbon and proton resonances from the same amino acid side chain of proteins in aqueous solution. It thus allows unambiguous sequence-specific assignment of aromatic amino acid ring signals based on backbone assignments. Compared to conventional 2D approaches, the inclusion of evolution periods on 1Hβ and 13Cδ...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
Solid-state NMR detection of (14) N?(13) C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14) N?(13) C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14) N?(13) C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Magn Reson Chem. 2011 Feb;49(2):65-9
Authors: Middleton DA
Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the...
nmrlearner
Journal club
0
01-22-2011 01:52 PM
Solid-state NMR detection of (14)N--(13)C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14)N--(13)C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Solid-state NMR detection of (14)N--(13)C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.
Magn Reson Chem. 2011 Jan 3;
Authors: Middleton DA
Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary...
nmrlearner
Journal club
0
01-05-2011 09:51 PM
[NMR paper] Site-selective screening by NMR spectroscopy with labeled amino acid pairs.
Site-selective screening by NMR spectroscopy with labeled amino acid pairs.
Related Articles Site-selective screening by NMR spectroscopy with labeled amino acid pairs.
J Am Chem Soc. 2002 Mar 20;124(11):2446-7
Authors: Weigelt J, van Dongen M, Uppenberg J, Schultz J, Wikström M
A new method for site-selective screening by NMR is presented. The core of the new method is the dual amino acid sequence specific labeling technique. Amino acid X is labeled with (13)C and amino acid Y is labeled with (15)N. Provided only one XY pair occurs in the...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and ir
Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and iron(III)-superoxide dismutase from Escherichia coli.
Related Articles Amino acid-specific isotopic labeling and active site NMR studies of iron(II)- and iron(III)-superoxide dismutase from Escherichia coli.
J Biomol NMR. 2000 Aug;17(4):311-22
Authors: Sorkin DL, Miller AF
We have developed and employed multiple amino acid-specific isotopic labeling schemes to obtain definitive assignments for active site 1H NMR resonances of iron(II)- and iron(III)-superoxide...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Involvement of various amino- and carboxyl-terminal residues in the active site of th
Involvement of various amino- and carboxyl-terminal residues in the active site of the histidine-containing protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus: site-directed mutagenesis with the ptsH gene, biochemical characterization and NMR studies of the mutant proteins.
Related Articles Involvement of various amino- and carboxyl-terminal residues in the active site of the histidine-containing protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus: site-directed mutagenesis with...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D -NOESY
Francesco Fiorito, Torsten Herrmann, Fred F. Damberger and Kurt Wüthrich
Journal of Biomolecular NMR; 2008; 42(1); pp 23-33
Abstract
ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of 1HN, 15N, 13Cα, 13Cβ and possibly 1Hα from the previous polypeptide backbone assignment, and one or several 3D 13C- or 15N-resolved -NOESY spectra. ASCAN has also been...