[NMR paper] Investigation of Lysine Side Chain Interactions of Interleukin-8 with Heparin and other Glycosaminoglycans Studied by a Methylation-NMR Approach.
Investigation of Lysine Side Chain Interactions of Interleukin-8 with Heparin and other Glycosaminoglycans Studied by a Methylation-NMR Approach.
Glycobiology. 2013 Aug 27;
Authors: Möbius K, Nordsieck K, Pichert A, Samsonov SA, Thomas L, Schiller J, Kalkhof S, Pisabarro MT, Beck-Sickinger AG, Huster D
Abstract
Although the interaction between interleukin-8 (IL-8) and glycosaminoglycans (GAG) is crucial for the mediation of inflammatory effects little is known about the site specificity of this interaction. Therefore, we studied complexes of IL-8 and heparin as well as other GAGs in a multidisciplinary approach, involving site-directed mutagenesis, mass spectrometry, fluorescence and solution NMR spectroscopy as well as computer modeling. The interaction between GAG and IL-8 is largely driven by the amine groups of the lysine and the guanidinium groups of arginine side chains. However, due to fast exchange with the solvent, it is typically not possible to record NMR signals of those groups. Here, we applied reductive (13)C-methylation of the lysine side chains providing sensitive NMR probes for monitoring directly the sites of GAG interaction in (1)H-(13)C correlation experiments. We focused on the lysine side chains K25, K28, K59, K69 and K72 of IL-8(1-77), which were reported to be involved in the binding to GAGs. The NMR signals of these residues were assigned in (1)H-(13)C HSQC spectra through the help of site-directed mutagenesis. NMR and fluorescence titration experiments in combination with molecular docking and molecular dynamics simulations were applied to investigate the involvement of each lysine in the binding with heparin and various GAG hexasaccharides. We identified K25, K69 and K72 to be the most relevant binding anchors of IL-8(1-77) for the analyzed GAGs.
PMID: 23982278 [PubMed - as supplied by publisher]
[NMR paper] Backbone (1)H, (15)N, (13)C and side chain (13)C? NMR chemical shift assignment of murine interleukin-10.
Backbone (1)H, (15)N, (13)C and side chain (13)C? NMR chemical shift assignment of murine interleukin-10.
Backbone (1)H, (15)N, (13)C and side chain (13)C? NMR chemical shift assignment of murine interleukin-10.
Biomol NMR Assign. 2013 Aug 25;
Authors: Künze G, Theisgen S, Huster D
Abstract
Almost complete assignment of backbone (1)H, (13)C, (15)N and side chain (13)C? resonances for the immune-regulatory cytokine IL-10 is reported. The protein was overexpressed in Escherichia coli and was refolded from inclusion bodies. The point...
nmrlearner
Journal club
0
08-29-2013 01:53 PM
Lysine methylation strategies for characterizing protein conformations by NMR
Lysine methylation strategies for characterizing protein conformations by NMR
Abstract In the presence of formaldehyde and a mild reducing agent, reductive methylation is known to achieve near complete dimethylation of protein amino groups under non-denaturing conditions, in aqueous media. Amino methylation of proteins is employed in mass spectrometric, crystallographic, and NMR studies. Where biosynthetic labeling is prohibitive, amino 13C-methylation provides an attractive option for monitoring folding, kinetics, proteinâ??protein and protein-DNA interactions by NMR. Here, we...
nmrlearner
Journal club
0
09-10-2012 01:48 AM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear (1)H-(15)N NMR Spectroscopy.
J Am Chem Soc. 2010 Dec 27;
Authors: Esadze A, Li DW, Wang T, Bru?schweiler R, Iwahara J
Despite their importance in macromolecular interactions and functions, the dynamics of lysine side-chain amino groups in proteins are not well understood. In this study, we have developed the methodology for the investigations of the dynamics...
nmrlearner
Journal club
0
12-29-2010 04:04 PM
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Dynamics of Lysine Side-Chain Amino Groups in a Protein Studied by Heteronuclear 1H-15N NMR Spectroscopy
Alexandre Esadze, Da-Wei Li, Tianzhi Wang, Rafael Bru?schweiler and Junji Iwahara
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107847d/aop/images/medium/ja-2010-07847d_0007.gif
Journal of the American Chemical Society
DOI: 10.1021/ja107847d
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/iFwgRBt-zto
nmrlearner
Journal club
0
12-28-2010 05:27 AM
[NMR paper] NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-label
NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins.
Related Articles NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins.
J Biomol NMR. 2000 Aug;17(4):305-10
Authors: Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ
We describe the direct observation of side chain-side chain hydrogen bonding interactions in proteins with sensitivity-enhanced NMR spectroscopy. Specifically, the remote correlation between the guanidinium nitrogen 15Nepsilon of arginine 71,...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Detection of very weak side chain-main chain hydrogen bonding interactions in medium-
Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy.
Related Articles Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy.
J Biomol NMR. 2000 May;17(1):79-82
Authors: Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ
We describe the direct observation of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics
Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics, and NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics, and NMR spectroscopy.
Protein Sci. 1995 May;4(5):936-44
Authors: Hammen PK, Scholtz...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double
Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy.
Related Articles Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy.
Biochemistry. 1990 Sep 4;29(35):8172-84
Authors: Clore GM, Bax A, Driscoll PC, Wingfield PT, Gronenborn AM
The assignment of the aliphatic 1H and 13C resonances of IL-1 beta, a protein of 153 residues and molecular...