Related ArticlesIntramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding.
J Mol Biol. 2002 Sep 6;322(1):137-52
Authors: Akerud T, Thulin E, Van Etten RL, Akke M
Low molecular weight protein tyrosine phosphatase (LMW-PTP) dimerizes in the phosphate-bound state in solution with a dissociation constant of K(d)=1.5(+/-0.1)mM and an off-rate on the order of 10(4)s(-1). 1H and 15N NMR chemical shifts identify the dimer interface, which is in excellent agreement with that observed in the crystal structure of the dimeric S19A mutant. Two tyrosine residues of each molecule interact with the active site of the other molecule, implying that the dimer may be taken as a model for a complex between LMW-PTP and a target protein. 15N relaxation rates for the monomeric and dimeric states were extrapolated from relaxation data acquired at four different protein concentrations. Relaxation data of satisfactory precision were extracted for the monomer, enabling model-free analyses of backbone fluctuations on pico- to nanosecond time scales. The dimer relaxation data are of lower quality due to extrapolation errors and the possible presence of higher-order oligomers at higher concentrations. A qualitative comparison of order parameters in the monomeric and apparent dimeric states shows that loops forming the dimer interface become rigidified upon dimerization. Qualitative information on monomer-dimer exchange and intramolecular conformational exchange was obtained from the concentration dependence of auto- and cross-correlated relaxation rates. The loop containing the catalytically important Asp129 fluctuates between different conformations in both the monomeric and dimeric (target bound) states. The exchange rate compares rather well with that of the catalyzed reaction step, supporting existing hypotheses that catalysis and enzyme dynamics may be coupled. The side-chain of Trp49, which is important for substrate specificity, exhibits conformational dynamics in the monomer that are largely quenched upon formation of the dimer, suggesting that binding is associated with the selection of a single side-chain conformer.
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Raquel Godoy-Ruiz, Chenyun Guo and Vitali Tugarinov
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1083656/aop/images/medium/ja-2010-083656_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja1083656
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/hxZ4cabF688
nmrlearner
Journal club
0
12-08-2010 10:04 AM
Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH.
Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH.
Design and NMR Studies of Cyclic Peptides Targeting the N-Terminal Domain of the Protein Tyrosine Phosphatase YopH.
Chem Biol Drug Des. 2010 Nov 30;
Authors: Leone M, Barile E, Dahl R, Pellecchia M
We report on the design and evaluation of novel cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH from Yersinia. Cyclic peptides have been designed based on a short sequence from the protein SKAP-HOM...
nmrlearner
Journal club
0
12-02-2010 02:54 PM
[NMR paper] NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from
NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from Bacillus subtilis.
Related Articles NMR assignments of a low molecular weight protein tyrosine phosphatase (PTPase) from Bacillus subtilis.
J Biomol NMR. 2005 Apr;31(4):363
Authors: Xu H, Zhang P, Jin C
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin r
Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme.
Related Articles Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme.
J Am Chem Soc. 2005 Jun 8;127(22):8214-25
Authors: Tugarinov V, Ollerenshaw JE, Kay LE
New NMR experiments for the measurement of side-chain dynamics in high molecular weight ( approximately 100 kDa) proteins are presented. The experiments quantify (2)H spin...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Quantitative NMR studies of high molecular weight proteins: application to domain ori
Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G.
Related Articles Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G.
J Mol Biol. 2003 Apr 11;327(5):1121-33
Authors: Tugarinov V, Kay LE
A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP rece
Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP)
Related Articles Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP)
J Biomol NMR. 2000 Jan;16(1):79-80
Authors: Won HS, Yamazaki T, Lee TW, Jee JG, Yoon MK, Park SH, Otomo T, Aiba H, Kyogoku Y, Lee BJ
nmrlearner
Journal club
0
11-18-2010 09:15 PM
NMR Reveals Two-Step Association of Congo Red to Amyloid ? in Low-Molecular-Weight Ag
NMR Reveals Two-Step Association of Congo Red to Amyloid ? in Low-Molecular-Weight Aggregates.
Related Articles NMR Reveals Two-Step Association of Congo Red to Amyloid ? in Low-Molecular-Weight Aggregates.
J Phys Chem B. 2010 Nov 15;
Authors: Pedersen MO, Mikkelsen K, Behrens MA, Pedersen JS, Enghild JJ, Skrydstrup T, Malmendal A, Nielsen NC
Aggregation of the Amyloid ? peptide into amyloid fibrils is closely related to development of Alzheimer's disease. Many small aromatic compounds have been found to act as inhibitors of fibril formation, and...
nmrlearner
Journal club
0
11-17-2010 05:49 PM
[NMR paper] Molecular dynamics-derived conformation and intramolecular interaction analysis of th
Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal immunoglobulin G fraction with selectivity for O-acetylated sialic acids.
Related Articles Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal immunoglobulin G fraction with selectivity for O-acetylated sialic acids.
...