BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-24-2011, 04:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Intra- and intermolecular translocation of the bi-domain transcription factor Oct1 characterized by liquid crystal and paramagnetic NMR.

Intra- and intermolecular translocation of the bi-domain transcription factor Oct1 characterized by liquid crystal and paramagnetic NMR.

Intra- and intermolecular translocation of the bi-domain transcription factor Oct1 characterized by liquid crystal and paramagnetic NMR.

Proc Natl Acad Sci U S A. 2011 May 31;108(22):E169-76

Authors: Takayama Y, Clore GM

Abstract
The intra- and intermolecular translocation processes whereby the bi-domain transcription factor Oct1 searches for its specific DNA target site have been investigated by residual dipolar coupling (RDC) and paramagnetic relaxation enhancement (PRE) measurements. The RDC data show that the orientation of the POU(S) and POU(HD) domains of Oct1 relative to the long axis of the DNA is the same for specific and nonspecific complexes with DNA. In the context of the specific Oct1-DNA complex, sparsely-populated, spectroscopically "invisible" states reveal their footprints on the PRE profiles observed for the specific complex. Analysis of the PRE data indicates that the POU(HD) domain searches the DNA primarily by rotation-coupled sliding (intramolecular translocation), while the POU(S) domain functions as an antenna to promote intersegment transfer via intermolecular translocation. The latter involves the formation of a bridged intermediate in which the POU(HD) domain is located on the first DNA molecule and the POU(S) domain on the second. The formation of the bridge intermediate promotes the completion of intermolecular translocation of Oct1 via a first order process involving dissociation and association of the POU(HD) domain from one DNA molecule to another. Thus cross-talk between the POU(S) and POU(HD) domains, each fulfilling different and complementary components of the search process ensures efficient sampling of DNA, thereby facilitating the location of specific Oct1 target sites.


PMID: 21555551 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

  #2  
Old 08-25-2011, 07:02 AM
Junior Member
 
Join Date: Aug 2011
Posts: 3
Points: 16, Level: 1
Points: 16, Level: 1 Points: 16, Level: 1 Points: 16, Level: 1
Level up: 31%, 34 Points needed
Level up: 31% Level up: 31% Level up: 31%
Activity: 15.8%
Activity: 15.8% Activity: 15.8% Activity: 15.8%
NMR Credits: 0
NMR Points: 16
Downloads: 0
Uploads: 0
Default

thank you very much......

Reply With Quote


Did you find this post helpful? Yes | No
Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
2H NMR studies of liquid crystal elastomers: macroscopic vs molecular properties
2H NMR studies of liquid crystal elastomers: macroscopic vs molecular properties Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 6 August 2011</br> Valentina, Domenici</br> More...
nmrlearner Journal club 0 08-08-2011 02:02 AM
Intra- and intermolecular translocation of the bi-domain transcription factor Oct1 characterized by liquid crystal and paramagnetic NMR [Biophysics and Computational Biology]
Intra- and intermolecular translocation of the bi-domain transcription factor Oct1 characterized by liquid crystal and paramagnetic NMR Takayama, Y., Clore, G. M.... Date: 2011-05-31 The intra- and intermolecular translocation processes whereby the bi-domain transcription factor Oct1 searches for its specific DNA target site have been investigated by residual dipolar coupling (RDC) and paramagnetic relaxation enhancement (PRE) measurements. The RDC data show that the orientation of the POUS and POUHD domains of Oct1 relative to the long axis of the DNA is the same for specific and...
nmrlearner Journal club 0 05-31-2011 11:41 PM
[NMR paper] Mechanisms for the enhanced thermal stability of a mutant of transcription factor 1 a
Mechanisms for the enhanced thermal stability of a mutant of transcription factor 1 as explained by (1)H, (15)N and (13)C NMR chemical shifts and secondary structure analysis. Related Articles Mechanisms for the enhanced thermal stability of a mutant of transcription factor 1 as explained by (1)H, (15)N and (13)C NMR chemical shifts and secondary structure analysis. Biochim Biophys Acta. 2000 Mar 16;1478(1):113-24 Authors: Vu HM, Liu W, Grove A, Geiduschek EP, Kearns DR A variant of the bacteriophage SPO1-encoded transcription factor 1 (TF1)...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] New perceptions of transcription factor properties from NMR.
New perceptions of transcription factor properties from NMR. Related Articles New perceptions of transcription factor properties from NMR. Biochem Cell Biol. 1998;76(2-3):368-78 Authors: Bagby S, Arrowsmith CH, Ikura M The complementarity of NMR and X-ray crystallography for biomacromolecular studies has been particularly evident in analysis of transcription factor structures and interactions. While X-ray crystallography can be used to tackle relatively complicated structural problems including multicomponent (three and higher) complexes, NMR...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] The Aspergillus nidulans transcription factor AlcR forms a stable complex with its ha
The Aspergillus nidulans transcription factor AlcR forms a stable complex with its half-site DNA: a NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The Aspergillus nidulans transcription factor AlcR forms a stable complex with its half-site DNA: a NMR study. FEBS Lett. 1997 May 19;408(2):235-40 Authors: Cerdan R, Collin D, Lenouvel F, Felenbok B, Guittet E The Aspergillus nidulans transcription factor AlcR is shown by NMR and gel retardation assay to form a...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] The Aspergillus nidulans transcription factor AlcR forms a stable complex with its ha
The Aspergillus nidulans transcription factor AlcR forms a stable complex with its half-site DNA: a NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The Aspergillus nidulans transcription factor AlcR forms a stable complex with its half-site DNA: a NMR study. FEBS Lett. 1997 May 19;408(2):235-40 Authors: Cerdan R, Collin D, Lenouvel F, Felenbok B, Guittet E The Aspergillus nidulans transcription factor AlcR is shown by NMR and gel retardation assay to form a...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Yeast heat shock transcription factor N-terminal activation domains are unstructured
Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Sci. 1996 Feb;5(2):262-9...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] A 1H-NMR study of the transcription factor 1 from Bacillus subtilis phage SPO1 by sel
A 1H-NMR study of the transcription factor 1 from Bacillus subtilis phage SPO1 by selective 2H-labeling. Complete assignment and structural analysis of the aromatic resonances for a 22-kDa homodimer. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles A 1H-NMR study of the transcription factor 1 from Bacillus subtilis phage SPO1 by selective 2H-labeling. Complete assignment and structural analysis of the aromatic resonances for a 22-kDa homodimer. Eur J...
nmrlearner Journal club 0 08-21-2010 11:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:36 AM.


Map