Abstract
A comprehensive analysis of the dynamics of the SH3 domain of chicken alpha-spectrin is presented, based upon (15)N T 1 and on- and off-resonance T 1? relaxation times obtained on deuterated samples with a partial back-exchange of labile protons under a variety of the experimental conditions, taking explicitly into account the dipolar order parameters calculated from (15)N-(1)H dipole-dipole couplings. It is demonstrated that such a multi-frequency approach enables access to motional correlation times spanning about 6 orders of magnitude. We asses the validity of different motional models based upon orientation autocorrelation functions with a different number of motional components. We find that for many residues a "two components" model is not sufficient for a good description of the data and more complicated fitting models must be considered. We show that slow motions with correlation times on the order of 1-10*?s can be determined reliably in spite of rather low apparent amplitudes (below 1*%), and demonstrate that the distribution of the protein backbone mobility along the time scale axis is pronouncedly non-uniform and non-monotonic: two domains of fast (?*
Did you find this post helpful? |
Similar Threads
Thread
Thread Starter
Forum
Replies
Last Post
[NMR paper] Protein functional dynamics in multiple timescales as studied by NMR spectroscopy.
Protein functional dynamics in multiple timescales as studied by NMR spectroscopy.
Protein functional dynamics in multiple timescales as studied by NMR spectroscopy.
Adv Protein Chem Struct Biol. 2013;92:219-51
Authors: Ortega G, Pons M, Millet O
Abstract
Protein functional dynamics are defined as the atomic thermal fluctuations or the segmental motions that are essential for the function of the biomolecule. NMR is a very versatile technique that allows obtaining quantitative information from these processes at atomic resolution....
nmrlearner
Journal club
0
08-21-2013 08:49 PM
[NMR paper] Solid-State NMR Approaches to Internal Dynamics of Proteins: From Picoseconds to Microseconds and Seconds.
Solid-State NMR Approaches to Internal Dynamics of Proteins: From Picoseconds to Microseconds and Seconds.
Solid-State NMR Approaches to Internal Dynamics of Proteins: From Picoseconds to Microseconds and Seconds.
Acc Chem Res. 2013 Jul 23;
Authors: Krushelnitsky A, Reichert D, Saalwächter K
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy has matured to the point that it is possible to determine the structure of proteins in immobilized states, such as within microcrystals or embedded in membranes. Currently, researchers...
nmrlearner
Journal club
0
07-24-2013 04:52 PM
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin.
Proc Natl Acad Sci U S A. 2011 Apr 28;
Authors: Struts AV, Salgado GF, Brown MF
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation...
nmrlearner
Journal club
0
04-30-2011 12:36 PM
[NMR paper] Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements.
Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements.
Related Articles Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements.
Biochemistry. 2005 Jul 19;44(28):9673-9
Authors: Gitti RK, Wright NT, Margolis JW, Varney KM, Weber DJ, Margolis FL
Nuclear magnetic resonance (NMR) (15)N relaxation measurements of the olfactory marker protein (OMP) including longitudinal relaxation (T(1)), transverse relaxation (T(2)), and (15)N-{(1)H} NOE data were collected at low...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implicati
Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implications for extended interactions of SH3 domains.
Related Articles Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implications for extended interactions of SH3 domains.
Protein Sci. 2003 Mar;12(3):510-9
Authors: Stoll R, Renner C, Buettner R, Voelter W, Bosserhoff AK, Holak TA
The melanoma inhibitory activity (MIA) protein is a clinically valuable marker in patients with malignant melanoma as enhanced values diagnose metastatic...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Slow internal dynamics in proteins: application of NMR relaxation dispersion spectros
Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme.
Related Articles Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme.
J Am Chem Soc. 2002 Feb 20;124(7):1443-51
Authors: Mulder FA, Hon B, Mittermaier A, Dahlquist FW, Kay LE
Recently developed carbon transverse relaxation dispersion experiments (Skrynnikov, N. R.; et al. J. Am. Chem. Soc. 2001, 123, 4556-4566) were...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at
Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance.
Related Articles Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance.
J Biomol NMR. 1995 Apr;5(3):233-44
Authors: Mispelter J, Lefèvre C, Adjadj E, Quiniou E, Favaudon V
Dynamics of the backbone and some side chains of apo-neocarzinostatin, a 10.7 kDa carrier protein, have been studied from 13C relaxation rates R1, R2 and steady-state 13C-(1H) NOEs, measured at natural abundance. Relaxation...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spe
Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spectroscopy.
J Magn Reson. 1999 Jun;138(2):244-55
Authors: Krushelnitsky A, Reichert D, Hempel G, Fedotov V, Schneider H, Yagodina L, Schulga A
Superslow backbone dynamics of the protein barstar and the polypeptide polyglycine was studied by...