BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 02:27 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Internal mobility in the partially folded DNA binding and dimerization domains of GAL

Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions.

Related Articles Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions.

Biochemistry. 1996 Feb 27;35(8):2674-86

Authors: Lefevre JF, Dayie KT, Peng JW, Wagner G

The DNA binding domain (residues 1--65) of the yeast transcriptional activator GAL4 is only partially folded. While residues 10-41, the DNA recognition domain, form a well-defined structure in the free protein, the whole polypeptide folds up and dimerizes upon binding DNA. In order to describe the mobility of the protein, we have characterized the frequency spectrum of the motions of N-H bond vectors of GAL4(1-65) using a reduced spectral density mapping approach (an approximation of the full spectral density mapping technique) [Peng, J. W., & Wagner, G. (1992a) J. Magn. Reson. 98, 308-332; Peng. J. W., & Wagner, G. (1992b) Biochemistry 31, 8571-8586]. 15N spin-lattice relaxation [Rn(Nz)], spin-spin relaxation [Rn(Nx,y)], cross-relaxation [RN(Hz-->Nz)], two-spin order [RNH(2HzNz)], and antiphase [RNH(2HzNx,y)] rates were determined for 52 of the 65 backbone amide groups at 10 degrees C and ph 6.5 at 11.74 T. Calculations of the spectral density functions using a reduced set of RN(Nz),RN(Nx,y),RN(Hz-->Nz), and RNH(2HzNz) gave excellent agreement with those calculated using all six sets. The reduced method has the added advantage that the errant behavior seen at high field values is circumvented. A linear correlation was found between J(omega N) and J(0) with a limited and clearly defined range of J(0) values which defines the range of rates for internal motions in GAL4(1-65). It appears that all residues experience a combination of two movements: one of the overall tumbling (correlation time, 8.65 ns) and the other of fast internal fluctuations of the structure. The respective weights of these contributions vary with the primary sequence and faithfully mirror the secondary and tertiary elements of the protein. The position on the correlation line of J(omega N) versus J(0) indicates the amount of angular averaging relative to the overall motion of the protein. A spectral density function for internal motions can be described.

PMID: 8611573 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR spectroscopy reveals the solution dimerization interface of p53 core domains boun
NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. Related Articles NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. J Biol Chem. 2001 Dec 28;276(52):49020-7 Authors: Klein C, Planker E, Diercks T, Kessler H, Künkele KP, Lang K, Hansen S, Schwaiger M The p53 protein is a transcription factor that acts as the major tumor suppressor in mammals. The core DNA-binding domain is mutated in about 50% of all human tumors. The...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] Design of an expression system for detecting folded protein domains and mapping macro
Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR. Protein Sci. 1997 Nov;6(11):2359-64 Authors: ...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Local fluctuations and global unfolding of partially folded BPTI detected by NMR.
Local fluctuations and global unfolding of partially folded BPTI detected by NMR. Related Articles Local fluctuations and global unfolding of partially folded BPTI detected by NMR. Biophys Chem. 1997 Feb 28;64(1-3):45-57 Authors: Barbar E, LiCata VJ, Barany G, Woodward C The protein Abu is a chemically synthesized variant of bovine pancreatic trypsin inhibitor (BPTI) with the 14-38 disulfide bond intact and cysteines 5, 30, 51, and 55 replaced by alpha-amino-n-butyric acid (Abu). At 1-6 degrees C and pH 4.5-6.5, Abu is partially folded with a...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Local fluctuations and global unfolding of partially folded BPTI detected by NMR.
Local fluctuations and global unfolding of partially folded BPTI detected by NMR. Related Articles Local fluctuations and global unfolding of partially folded BPTI detected by NMR. Biophys Chem. 1997 Feb 28;64(1-3):45-57 Authors: Barbar E, LiCata VJ, Barany G, Woodward C The protein Abu is a chemically synthesized variant of bovine pancreatic trypsin inhibitor (BPTI) with the 14-38 disulfide bond intact and cysteines 5, 30, 51, and 55 replaced by alpha-amino-n-butyric acid (Abu). At 1-6 degrees C and pH 4.5-6.5, Abu is partially folded with a...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Main-chain dynamics of a partially folded protein: 15N NMR relaxation measurements of
Main-chain dynamics of a partially folded protein: 15N NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Main-chain dynamics of a partially folded protein: 15N NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. J Mol Biol. 1996 Apr 5;257(3):669-83 Authors: Buck M, Schwalbe H, Dobson CM 15N NMR relaxation measurements have been used to study the dynamic...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Internal mobility of reactive-site-hydrolyzed recombinant Cucurbita maxima trypsin in
Internal mobility of reactive-site-hydrolyzed recombinant Cucurbita maxima trypsin inhibitor-V characterized by NMR spectroscopy: evidence for differential stabilization of newly formed C- and N-termini. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Internal mobility of reactive-site-hydrolyzed recombinant Cucurbita maxima trypsin inhibitor-V characterized by NMR spectroscopy: evidence for differential stabilization of newly formed C- and N-termini. Biochemistry. 1996 Sep 24;35(38):12503-10 ...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison
Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations. J Mol Biol. 1995 Feb 17;246(2):356-65 Authors: Smith PE, van Schaik RC, Szyperski T, Wüthrich K, van Gunsteren WF ...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] NMR characterization of partially folded and unfolded conformational ensembles of pro
NMR characterization of partially folded and unfolded conformational ensembles of proteins. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles NMR characterization of partially folded and unfolded conformational ensembles of proteins. Biopolymers. 1999;51(3):191-207 Authors: Barbar E Studies of unfolded and partially folded proteins provide important insight into the initiation and process of protein folding. This review focuses on the...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:50 AM.


Map